Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(43)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6023)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • ASTM
    E3353-22 Standard Guide for In-Process Monitoring Using Optical and Thermal Methods for Laser Powder Bed Fusion
    Edition: 2022
    $112.32
    Unlimited Users per year

Description of ASTM-E3353 2022

ASTM E3353-22

Active Standard: Standard Guide for In-Process Monitoring Using Optical and Thermal Methods for Laser Powder Bed Fusion




ASTM E3353

Scope

1.1 This guide provides information on emerging in-process monitoring sensors, sensor configurations, sensor data analysis, and sensor data uses for the laser powder bed fusion additive manufacturing process.

1.2 The sensors covered produce data related to and affected by feedstock, processing parameters, build atmosphere, microstructure, part geometry, part complexity, surface finish, and the printing equipment being used.

1.3 The parts monitored by the sensors covered in this guide are used in aerospace applications; therefore, their final inspection requirements for discontinuities are different and more stringent than for materials and components used in non-aerospace applications.

1.4 The metal materials under consideration include, but are not limited to, aluminum alloys, titanium alloys, nickel-based alloys, cobalt-chromium alloys, and stainless steels.

1.5 This guide discusses sensor observation of parts while they are being fabricated. Sensor data analysis may take place concurrently or after the manufacturing process has concluded.

1.6 The sensors discussed in this guide may be used by cognizant engineering organizations to detect both surface and volumetric flaws.

1.7 The sensors discussed in this guide may be used by cognizant engineering organizations to detect process stability or drift, or both.

1.8 The sensors discussed in this guide are primarily configured in staring, co-axial, or mounted configurations.

1.9 This guide does not recommend a specific course of action, sensor type, or configuration for application of in-process monitoring to additively manufactured (AM) parts. It is intended to increase the awareness of emerging in-process sensors, sensor configurations, data analysis, and data usage.

1.10 Recommendations about the control of input materials, process equipment calibration, manufacturing processes, and post-processing are beyond the scope of this guide and are under the jurisdiction of ASTM Committee F42 on Additive Manufacturing Technologies. Standards under the jurisdiction of ASTM F42 or equivalent are followed whenever possible to ensure reproducible parts suitable for NDT are made.

1.11 Recommendations about the inspection requirements and management of fracture critical AM parts are beyond the scope of this guide. Recommendations on fatigue, fracture mechanics, and fracture control are found in appropriate end user requirements documents, and in standards under the jurisdiction of ASTM Committee E08 on Fatigue and Fracture.

Note 1: To determine the deformation and fatigue properties of metal parts made by additive manufacturing using destructive tests, consult Guide F3122.

Note 2: To quantify the risks associated with fracture critical AM parts, it is incumbent upon the structural assessment community, such as ASTM Committee E08 on Fatigue and Fracture, to define critical initial flaw sizes (CIFS) for the part to define the objectives of the NDT.

1.12 This guide does not specify accept-reject criteria used in procurement or as a means for approval of AM parts for service. Any accept-reject criteria are given solely for purposes of illustration and comparison.

1.13 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.

1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

additive manufacturing; build chamber conditioning monitoring; defects; in-process monitoring; laser powder bed fusion; laser power monitoring; layer imaging; machine conditioning monitoring; machine learning; melt pool monitoring; melt pool signatures; process signatures; process signature taxonomy; statistical process control (SPC);


ICS Code

ICS Number Code 25.030 (Additive manufacturing)


DOI: 10.1520/E3353-22

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $434.23 Buy
VAR
ASTM
[+] $4,507.56 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X