Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(326)
(572)
(44)
(234)
(969)
(652)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • BSI
    BS EN ISO 17294-2:2016 Water quality. Application of inductively coupled plasma mass spectrometry (ICP-MS) - Determination of selected elements including uranium isotopes
    Edition: 2016
    $418.55
    / user per year

Description of BS EN ISO 17294-2:2016 2016

This part of ISO 17294 specifies a method for the determination of the elements aluminium, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, caesium, calcium, cerium, chromium, cobalt, copper, dysprosium, erbium, gadolinium, gallium, germanium, gold, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, palladium, phosphorus, platinum, potassium, praseodymium, rubidium, rhenium, rhodium, ruthenium, samarium, scandium, selenium, silver, sodium, strontium, terbium, tellurium, thorium, thallium, thulium, tin, tungsten, uranium and its isotopes, vanadium, yttrium, ytterbium, zinc and zirconium in water (for example, drinking water, surface water, ground water, waste water and eluates).

Taking into account the specific and additionally occurring interferences, these elements can also be determined in digests of water, sludges and sediments (for example, digests of water as described in ISO 15587‑1 or ISO 15587‑2 ).

The working range depends on the matrix and the interferences encountered. In drinking water and relatively unpolluted waters, the limit of quantification ( xLQ) lies between 0,002 µg/l and 1,0 µg/l for most elements (see Table 1). The working range typically covers concentrations between several pg/l and mg/l depending on the element and pre-defined requirements.

The quantification limits of most elements are affected by blank contamination and depend predominantly on the laboratory air-handling facilities available on the purity of reagents and the cleanliness of glassware.

The lower limit of quantification is higher in cases where the determination suffers from interferences (see Clause 5) or memory effects (see ISO 17294‑1:2004 , 8.2).

Table 1
Lower limits of quantification ( xLQ) for unpolluted water
Element Isotope often used Limit of quantification a

µg/l

Element Isotope often used Limit of quantification a

µg/l

Element Isotope often used Limit of quantification a

µg/l

Ag 107Ag 0,5 Hf 178Hf 0,1 Ru 102Ru 0,1
109Ag 0,5 Hg 202Hg 0,05 Sb 121Sb 0,2
Al 27Al 1 Ho 165Ho 0,1 123Sb 0,2
As 75As c 0,1 In 115In 0,1 Sc 45Sc 5
Au 197Au 0,5 Ir 193Ir 0,1 Se 77Se c 1
B 10B 1 K 39K C 5 78Se c 0,1
11B 1 La 139La 0,1 82Se 1
Ba 137Ba 3 Li 6Li 10 Sm 147Sm 0,1
138Ba 0,5 7Li 1 Sn 118Sn 1
Be 9Be 0,1 Lu 175Lu 0,1 120Sn 1
Bi 209Bi 0,5 Mg 24Mg 1 Sr 86Sr 0,5
Ca 43Ca 100 25Mg 10 88Sr 0,3
44Ca 50 Mn 55Mn 0,1 Tb 159Tb 0,1
40Ca 10 Mo 95Mo 0,5 Te 126Te 2
Cd 111Cd 0,1 98Mo 0,3 Th 232Th 0,1
114Cd 0,5 Na 23Na 10 Tl 203Tl 0,2
Ce 140Ce 0,1 Nd 146Nd 0,1 205Tl 0,1
Co 59Co 0,2 Ni 58Nic 0,1 Tm 169Tm 0,1
Cr 52Crc 0,1 60Nic 0,1 U 238U 0,1
53Cr 5 P 31P 5 235U 10-4
Cs 133Cs 0,1 Pb 206Pb b 0,2 234U 10-5
Cu 63Cu 0,1 207Pb b 0,2 V 51V c 0,1
65Cu 0,1 208Pb b 0,1 W 182W 0,3
Dy 163Dy 0,1 Pd 108Pd 0,5 184W 0,3
Er 166Er 0,1 Pr 141Pr 0,1 Y 89Y 0,1
Fe 56Fe c 5 Pt 195Pt 0,5 Yb 172Yb 0,2
Ga 69Ga 0,3 Rb 85Rb 0,1 174Yb 0,2
71Ga 0,3 Re 185Re 0,1 Zn 64Zn 1
Gd 157Gd 0,1 187Re 0,1 66Zn 1
158Gd 0,1 Rh 103Rh 0,1 68Zn 1
Ge 74Ge 0,3 Ru 101Ru 0,2 Zr 90Zr 0,2
a

Depending on the instrumentation, significantly lower limits can be achieved.

b

In order to avoid incorrect results due to the varying isotop ratios in the environment, the signal intensities of 206Pb, 207Pb and 208Pb shall be added.

c

In order to reach these limits, depending on interferences, the use of a collision/reaction cell is recommended



The following editions for this book are also available...

About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X