Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(649)
(2114)
(64)
(92448)
(54)
(535)
(117)
(33)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • BSI
    BS EN ISO 75-1:2020 Plastics. Determination of temperature of deflection under load - General test method
    Edition: 2020
    $316.70
    / user per year

Description of BS EN ISO 75-1:2020 2020

1.1

This document gives a general test method for the determination of the temperature of deflection under load (flexural stress under three-point loading) of plastics. Different types of test specimen and different constant loads are defined to suit different types of material.

1.2

ISO 75‑2 gives specific requirements for plastics (including filled plastics and fibre-reinforced plastics in which the fibre length, prior to processing, is up to 7,5 mm) and ebonite, while ISO 75‑3 gives specific requirements for high-strength thermosetting laminates and long-fibre-reinforced plastics in which the fibre length, prior to processing, is greater than 7,5 mm.

1.3

The methods specified are suitable for assessing the relative behaviour of different types of material at elevated temperature under load at a specified rate of temperature increase. The results obtained do not necessarily represent maximum applicable temperatures because, in practice, essential factors, such as time, loading conditions and nominal surface stress, can differ from the test conditions. True comparability of data can only be achieved for materials having the same room-temperature flexural modulus.

1.4

The methods specify preferred dimensions for the test specimens.

1.5

Data obtained using the test methods described are not intended to be used to predict actual end-use performance. The data are not intended for design analysis or prediction of the endurance of materials at elevated temperatures.

1.6

This method is commonly known as the heat deflection temperature or heat distortion temperature (HDT) test, although there is no official document using this designation.

1.1

This document gives a general test method for the determination of the temperature of deflection under load (flexural stress under three-point loading) of plastics. Different types of test specimen and different constant loads are defined to suit different types of material.

1.2

ISO 75‑2 gives specific requirements for plastics (including filled plastics and fibre-reinforced plastics in which the fibre length, prior to processing, is up to 7,5 mm) and ebonite, while ISO 75‑3 gives specific requirements for high-strength thermosetting laminates and long-fibre-reinforced plastics in which the fibre length, prior to processing, is greater than 7,5 mm.

1.3

The methods specified are suitable for assessing the relative behaviour of different types of material at elevated temperature under load at a specified rate of temperature increase. The results obtained do not necessarily represent maximum applicable temperatures because, in practice, essential factors, such as time, loading conditions and nominal surface stress, can differ from the test conditions. True comparability of data can only be achieved for materials having the same room-temperature flexural modulus.

1.4

The methods specify preferred dimensions for the test specimens.

1.5

Data obtained using the test methods described are not intended to be used to predict actual end-use performance. The data are not intended for design analysis or prediction of the endurance of materials at elevated temperatures.

1.6

This method is commonly known as the heat deflection temperature or heat distortion temperature (HDT) test, although there is no official document using this designation.



About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X