Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Enter keywords for book title search
Search book content
Enter keywords for book content search
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(317)
(572)
(44)
(234)
(969)
(643)
(2114)
(64)
(92448)
(54)
(535)
(117)
(31)
(20)
(19)
(92811)
(3)
(17)
(1)
(351)
(300)
(6217)
(239)
(16)
(5)
(1621)
(16)
(18)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(23)
(26)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Technical Bulletin
 All
  • BSI
    BS ISO 17281:2018 Plastics. Determination of fracture toughness (GIC and KIC) at moderately high loading rates (1 m/s)
    Edition: 2018
    $418.55
    / user per year

Description of BS ISO 17281:2018 2018

This document specifies the principles and provides guidelines for determining the fracture toughness of plastics in the crack-opening mode (Mode I) by a linear elastic fracture mechanics (LEMF) approach, at load-point displacement rates of up to 1 m/s. It supplements ISO 13586 so as to extend its applicability to loading rates somewhat higher than is the case in the scope of the latter document.

Fracture testing at high loading rates presents special problems because of the presence of dynamic effects: vibrations in the test system producing oscillations in the recorded quantities, and inertial loads producing forces on the test specimen different from the forces sensed by the test fixture. These effects need either to be controlled and, if possible, reduced by appropriate action, or else to be taken into account through proper analysis of the measured data.

The relative importance of such effects increases with increasing testing rate (decreasing test duration). At speeds of less than 0,1 m/s (loading times of greater than 10 ms) the dynamic effects may be negligible and the testing procedure given in ISO 13586 can be applied as it stands. At speeds approaching 1 m/s (loading times of the order of 1 ms) the dynamic effects may become significant but still controllable. The procedure given in ISO 13586 can still be used though with some provisos and these are contemplated in this document. At speeds of several meters per second and higher (loading times markedly shorter than 1 ms) the dynamic effects become dominant, and different approaches to fracture toughness determination are required, which are outside the scope of this document.

The general principles, methods and rules given in ISO 13586 for fracture testing at low loading rates remain valid except where expressly stated otherwise in this document.

The methods are suitable for use with the same range of materials as covered by ISO 13586, i.e.

  • rigid and semi-rigid thermoplastic moulding, extrusion and casting materials;

  • rigid and semi-rigid thermosetting moulding and casting materials;

and their compounds containing fibres ≤ 7,5mm in length.

In general, fibres 0,1 mm to 7,5 mm in length are known to cause heterogeneity and anisotropy, especially significant in the fracture processes. Therefore, in parallel with Annex B of ISO 13586:2018, where relevant Annex C of this document offers some guidelines to extend the application of the same testing procedure, with some reservations, to rigid and semi-rigid thermoplastic or thermosetting plastics containing such short fibres.

Although the dynamic effects occurring at high loading rates are largely dependent on the material tested as well as on the test equipment and test geometry used, the guidelines given here are valid in general, irrespective of test equipment, test geometry and material tested.

The same restrictions as to linearity of the load-displacement diagram, specimen size and notch tip sharpness apply as for ISO 13586.



The following editions for this book are also available...

About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X