Already a subscriber? 

MADCAD.com Free Trial
Sign up for a 3 day free trial to explore the MADCAD.com interface, PLUS access the
2009 International Building Code to see how it all works.
If you like to setup a quick demo, let us know at support@madcad.com
or +1 800.798.9296 and we will be happy to schedule a webinar for you.
Security check
Please login to your personal account to use this feature.
Please login to your authorized staff account to use this feature.
Are you sure you want to empty the cart?

PD CEN/TR 17603-32-25:2022 Space engineering. Mechanical shock design and verification handbook, 2022
- undefined [Go to Page]
- 2.4 24BReferences of Part 4
- 3.1 25BTerms and definitions from other documents
- 3.2 26BTerms and definitions specific to the present document
- 3.3 27BAbbreviated terms
- 4 6BBackground – Shock environment description [Go to Page]
- 4.1 28BShock definition and main characteristics [Go to Page]
- 4.1.4 92BShock response spectra (SRS)
- 5 7BShock events [Go to Page]
- 5.1 29BShock occurrence
- 5.2 30BShock environmental categories
- 6 8BIntroduction to shock design and verification process [Go to Page]
- 6.1 31BPresentation of the global process
- 6.2 32BMeans to conduct an evaluation of shock environment and criticality
- 7 9BShocks in spacecraft [Go to Page]
- 7.1 33BOverview
- 7.2 34BPotential shock sources for spacecraft
- 7.3 35BShocks devices description
- 7.4 36BDetailed information on specific shock events [Go to Page]
- 7.4.1 93BOverview
- 7.4.2 94BLauncher induced shocks
- 7.4.3 95BClampband release
- 7.5 37BConclusion
- 8 10BShock inputs derivation by similarityheritageextrapolation [Go to Page]
- 8.1 38BOverview
- 9 11BShock inputs derivation by numerical analysis
- 10 12BDeriving a specification from a shock environment [Go to Page]
- [Go to Page]
- 7.4.4 96BOther S/C separation systems
- 7.4.5 97BInternal shock sources
- 7.4.6 98BLanding and splashdown
- 8.2 39BSimilarity-heritage-extrapolation methods principle [Go to Page]
- 8.2.1 99BOverview
- 8.2.2 100BUse of database
- 8.2.3 101BZoning procedure
- 8.2.4 102BSRS ratio as approximation of transfer functions
- 8.2.5 103BDifference between structural model and flight model
- 8.2.6 104BStatistical methods to derive maximum expected environment
- 8.3 40BSimilarity-heritage-extrapolation methods in practice [Go to Page]
- 8.3.1 105BMethod A – Point source excitation
- 8.3.2 106BMethod B – Clampband excitation
- 8.3.3 107BMethod C – Launcher induced shock
- 8.3.4 108BMethod D – Unified approach and practical implementation of attenuation rules for typical spacecraft shock generated environments
- 8.3.5 109BAdditional attenuation factors
- 8.3.6 110BMethod E – Shock responses in instruments
- 9.1 41BNumerical simulation principles [Go to Page]
- 9.1.1 111BRationale and limitations
- 9.2 42BFinite Element Analysis (FEA) Numerical methods [Go to Page]
- 9.2.1 112BComparison of explicit and implicit methods
- 9.2.2 113BExplicit and implicit integration schemes
- 9.2.3 114BExample of simulation codes (implicit and explicit)
- 9.2.4 115BModelling aspects
- 9.3 43BStatistical Energy Analysis (SEA) Numerical Methods [Go to Page]
- 9.3.1 116BThe classical SEA approach
- 9.3.2 117BThe Transient SEA formulation
- 9.3.3 118BPrediction of shock response by Local Modal Phase Reconstruction (LMPR)
- 9.3.4 119BVirtual SEA modelling for robust SEA modelling in the mid-frequency
- 9.4 44BBest practices for shock derivation by simulation
- 9.5 45BExamples of methodology for numerical simulation [Go to Page]
- 9.5.1 120BNumerical simulation for clampband release
- 9.5.2 121BNumerical simulation for Shogun
- 10.1 46BSpecification tool
- 11 13BShock attenuation
- 12 14BGeneral approach to shock verification [Go to Page]
- [Go to Page]
- 9.5.3 122BNumerical simulation for launcher induced shock
- 9.5.4 123BImplicit vs. explicit method: Example of a shock prediction on a complex structure
- 9.5.5 124BShock prediction analysis examples using SEA-Shock module of SEA+ software
- 10.2 47BDeriving the qualification environment – MEE and qualification margin
- 10.3 48BFrom level derivation/Measure to specification
- 11.1 49BDefinitions [Go to Page]
- 11.1.1 125BHistory of shock attenuation
- 11.1.2 126BImpedance breakdown
- 11.1.3 127BShock and vibration Isolator
- 11.1.4 128BDamper
- 11.1.5 129BShock absorber
- 11.2 50BTheoretical background [Go to Page]
- 11.2.1 130BShock attenuation problematic approach
- 11.2.2 131BShock isolator device features
- 11.2.3 132BRubber and damping effect
- 11.2.4 133BElastomer type selection
- 11.3 51BAttenuator device development [Go to Page]
- 11.3.1 134BOverview
- 11.3.2 135BAttenuator requirement definition
- 11.3.3 136BAttenuator device development logic
- 11.4 52BAttenuator device manufacturing [Go to Page]
- 11.4.1 137BOverview
- 11.4.2 138BManufacturing process
- 11.4.3 139BMoulding technology
- 11.4.4 140BManufacturing limitations
- 11.5 53BProduct assurance logic
- 11.6 54BExisting attenuator products [Go to Page]
- 11.6.1 141BOverview
- 11.6.2 142BCompact shock attenuators for electronic equipment
- 11.6.3 143BSASSA (shock attenuator system for spacecraft and adaptor)
- 11.6.4 144BShock isolators for EXPERT on-board equipment
- 12.1 55BRationale for shock verification
- 12.2 56BTest rationale and model philosophy
- 12.3 57BEnvironmental test categories
- 13 15BShock testing
- 14 16BData analysis tools for shock [Go to Page]
- [Go to Page]
- 12.2.1 145BQualification test
- 12.2.2 146BAcceptance test
- 12.2.3 147BSystem / subsystem distinction
- 12.2.4 148BModel philosophy
- 12.3.1 149BCombination or separation of sources
- 12.3.2 150BPyroshock environmental categories
- 12.4 58BShock sensitive equipment and severity criteria [Go to Page]
- 12.4.1 151BIdentification of shock sensitive equipment
- 12.4.2 152BSeverity criteria
- 12.4.3 153BSynthesis
- 12.5 59BEquivalence between shock and other mechanical environment [Go to Page]
- 12.5.1 154BQuasi static equivalence – effective mass method
- 12.5.2 155BUse of sine vibration test data
- 12.5.3 156BUse of random vibration test data
- 12.6 60BSimilarity between equipment – Verification by similarity [Go to Page]
- 12.6.1 157BIntroduction
- 12.6.2 158BSimilarity criteria for shock
- 12.6.3 159BExample of process for verification by similarity
- 12.7 61BSpecific guidelines for shock verification [Go to Page]
- 12.7.1 160BOptical instrument
- 12.7.2 161BPropulsion sub system
- 13.1 62BShock test specifications [Go to Page]
- 13.1.1 162BTest levels and forcing function
- 13.1.2 163BNumber of applications
- 13.1.3 164BMounting conditions
- 13.1.4 165BTest article operation
- 13.1.5 166BSafety and cleanliness
- 13.1.6 167BInstrumentation
- 13.1.7 168BTest tolerances
- 13.1.8 169BTest success criteria
- 13.2 63BCriteria for test facility selection
- 13.3 64BTest methods and facilities [Go to Page]
- 13.3.1 170BBasis
- 13.3.2 171BProcedure I – System level shock test
- 13.4 65BTest monitoring
- 15 17BShock data validation
- 16 18BIntroduction to shock damage risk assessment and objective [Go to Page]
- [Go to Page]
- 13.3.3 172BProcedure II – Equipment shock test by pyrotechnic device (explosive detonation)
- 13.3.4 173BProcedure III – Equipment shock test by mechanical impact (metal-metal impact)
- 13.3.5 174BProcedure IV – Equipment shock test with an electrodynamic shaker
- 13.4.1 175BAccelerometers
- 13.4.2 176BStrain gauges
- 13.4.3 177BLoad cells
- 13.4.4 178BLaser vibrometer
- 13.4.5 179BAcquisition systems
- 13.5 66BIn-flight shock monitoring [Go to Page]
- 13.5.1 180BOverview
- 13.5.2 181BVEGA in-flight acquisition systems
- 14.1 67BIntroduction
- 14.2 68BShock Response Spectra (SRS) [Go to Page]
- 14.2.1 182BBasis
- 14.2.2 183BDefinition
- 14.2.3 184BSRS properties
- 14.2.4 185BSRS algorithm
- 14.2.5 186BRecommendations on SRS computation
- 14.2.6 187BQ-factor
- 14.2.7 188BSRS limitations
- 14.3 69BFast Fourier Transform (FFT) [Go to Page]
- 14.3.1 189BFFT definition
- 14.3.2 190BPrecautions
- 14.4 70BTime-Frequency Analysis (TFA) [Go to Page]
- 14.4.1 191BGeneral
- 14.4.2 192BLinear Time-Frequency Transform (TFT)
- 14.4.3 193BQuadratic Time-Frequency Transform
- 14.4.4 194BInterpretation and precautions
- 14.5 71BProny decomposition [Go to Page]
- 14.5.1 195BDefinition
- 14.5.2 196BBasic scheme
- 14.5.3 197BAdvanced scheme
- 14.6 72BDigital filters
- 15.1 73BOverview
- 15.2 74BVisual inspection
- 17 19BUnit susceptibility with respect to shock [Go to Page]
- 2.1 21BReferences of Part 1
- 2.2 22BReferences of Part 2 [Go to Page]
- 14.5.4 198BUse and limitation
- 14.6.1 199BBasis
- 14.6.2 200BDefinition and parameters
- 14.6.3 201BFIR filters
- 14.6.4 202BIIR filters
- 14.6.5 203BPrecautions
- 15.3 75BData analysis – simplified criteria [Go to Page]
- 15.3.1 204BDuration analysis
- 15.3.2 205BValidity frequency range
- 15.3.3 206BFinal validity criteria - Positive versus negative SRS
- 15.4 76BData analysis – refined criteria – Velocity validation
- 15.5 77BCorrections for anomalies [Go to Page]
- 15.5.1 207BOverview
- 15.5.2 208BCorrection for zeroshift
- 15.5.3 209BCorrection for power line pickup
- 16.1 78BOverview
- 16.2 79BAssessment context
- 16.3 80BOutputs of SDRA and associated limitations
- 17.1 81BOverview
- 17.2 82BDerivation of qualification shock levels at unit interface
- 17.3 83BIdentification of critical frequency ranges
- 17.4 84BConsiderations related to life duration and mission
- 17.5 85BList of shock sensitive components/units [Go to Page]
- 17.5.1 210BOverview
- 17.5.2 211BElectronic components and associated degradation modes
- 17.5.3 212BFunctional mechanical assemblies
- 17.5.4 213BMechanisms and associated degradation modes
- 18 20BShock damage risk analysis [Go to Page]
- 18.1 86BRequired inputs for detailed SDRA
- 18.2 87BEvaluation of transmissibility between equipment and sensitive components interfaces [Go to Page]
- 18.2.1 214BOverview
- 18.2.2 215BDerivation by extrapolation from test data
- 18.2.3 216BShock response prediction based on transmissibility
- 18.3 88BVerification method per type of components and/or units
- 2.3 23BReferences of Part 3 [Go to Page]
- 4.1.1 89BShock definition
- 4.1.2 90BPhysical aspects of shocks
- 4.1.3 91BMain shock effects [Go to Page]
- 4.1.4.1 222BOverview
- 4.1.4.2 223BShock response spectra definition
- 4.1.4.3 224BSRS properties
- 18.2.4 217BGuideline for equipment shock analysis
- 18.3.1 218BElectronic equipment
- 18.3.2 219BMechanisms – Ball bearings
- 18.3.3 220BValves
- 18.3.4 221BOptical components
- 1 3BScope
- 2 4BReferences
- 3 5BTerms, definitions and abbreviated terms [Go to Page]
- [Go to Page]
- [Go to Page]
- 4.1.4.4 225BRecommendations on SRS calculation
- 4.1.4.5 226BSRS limitations
- 7.4.2.1 227BExample of spacecraft/LV shock compatibility test – SHOGUN
- 7.4.2.2 228BExample of spacecraft/LV shock compatibility test – VESTA
- 7.4.3.1 229BOverview
- 7.4.3.2 230BStandard clampband device
- 7.4.3.3 231BLow shock clampband device
- 7.4.4.1 232BMechanical lock systems by EUROCKOT
- 7.4.4.2 233BPSLV separation system
- 7.4.4.3 234BDnepr explosive bolts
- 7.4.4.4 235BAriane 5 micro satellite separation system
- 7.4.4.5 236BSoyouz Dispenser
- 8.2.2.1 237BCharacterization database
- 8.2.2.2 238BSpacecraft test results databases
- 8.2.6.1 239BOverview
- 8.2.6.2 240BNormal Tolerance Limit method
- 8.2.6.3 241BBootstrap method
- 8.2.6.4 242BComparison between P99/90 and P95/50+3 dB levels
- 8.2.6.5 243BConclusions
- 8.3.1.1 244BPresentation of the used method
- 8.3.1.2 245BExample 1 – Shock mapping of the EXPERT re-entry vehicle due to separation from LV
- 8.3.1.3 246BExample 2 – Internal shock induced by appendages deployment
- 8.3.2.1 247BPresentation of the used method
- 8.3.2.2 248BGeneral observations for a better understanding of Clampband release shock propagation
- 8.3.3.1 249BPresentation of the used method
- 8.3.3.2 250BGeneral observations for a better understanding of launcher induced shock propagation
- 8.3.3.3 251BDifferences between clampband and launcher induced shock
- 8.3.4.1 252BJunction attenuation factors
- 8.3.4.2 253BDistance attenuation factors
- 8.3.4.3 254BCalculation of total shock attenuation factors and derivation of shock output
- 8.3.4.4 255BCorrection factors
- 8.3.4.5 256BMethodology correlation with test results
- 8.3.4.6 257BExample of implementation of the methodology
- 8.3.6.1 258BMethod E-1: Transmissibility approach – transfer function scaled to input shock specification
- 8.3.6.2 259BMethod E-2: Transient analysis approach – coupled analysis with platform
- 9.2.4.1 260BMeshing size
- 9.2.4.2 261BTime step
- 9.2.4.3 262BElements type
- 9.2.4.4 263BModelling of equipment
- 9.2.4.5 264BRestitution point
- 9.2.4.6 265BModelling of junctions
- 9.2.4.7 266BDamping modelling
- 9.2.4.8 267BSource modelling and boundary conditions
- 9.5.3.1 268BOverview
- 9.5.3.2 269BA5 / MSG coupled shock analyses
- 9.5.3.3 270BAriane5 Low Shock Recovery Plan Analyses
- 9.5.3.4 271BSynthesis
- 11.2.4.1 272BOverview
- 11.2.4.2 273BNatural rubber
- 11.2.4.3 274BBlack Synthetic rubbers
- 11.2.4.4 275BSilicon rubbers
- 11.3.2.1 276BIntroduction
- 11.3.2.2 277BPerformance specification
- 11.3.2.3 278BEnvironment definition
- 11.3.2.4 279BImportant factors affecting isolator selection / definition
- 11.3.2.5 280BModel specification
- 11.3.3.1 281BIntroduction
- 11.3.3.2 282BAttenuator pre-dimensioning
- 11.3.3.3 283BMaterial characterization
- 11.3.3.4 284BDesign preliminaries
- 11.3.3.5 285BPrototyping
- 11.3.3.6 286BAttenuator design development
- 11.6.2.1 287BPurpose of shock isolation device
- 11.6.2.2 288BShock isolation device principle
- 11.6.2.3 289BPerformance achieved with the isolator device
- 11.6.3.1 290BRequirement specification analysis
- 11.6.3.2 291BBaseline design presentation (QM for pre-qualification)
- 11.6.3.3 292BSASSA system qualification with Eurostar3000 STM
- 11.6.3.4 293BSASSA lessons learnt
- 11.6.4.1 294BOverview
- 11.6.4.2 295BMain Technical specifications and assessments
- 11.6.4.3 296BPresentation of the design
- 11.6.4.4 297BPerformances
- 12.2.1.1 298BQualification shock test on QM unit
- 12.2.1.2 299BCase of re-test on QM unit
- 12.2.1.3 300BCase of qualification shock test on PFM unit
- 12.4.2.1 301BOverview
- 12.4.2.2 302BElectronic units
- 12.4.2.3 303BStructural and non-sensitive equipment
- 12.4.2.4 304BOther sensitive units
- 12.5.1.1 305BDefinition
- 12.5.1.2 306BExample of application
- 12.5.1.3 307BApplicability and limitations:
- 12.5.3.1 308BIntroduction
- 12.5.3.2 309BSignal processing tools to convert random PSD into Response Spectrum
- 12.5.3.3 310BApplicability of random equivalence w.r.t. shock
- 12.6.3.1 311BAt complete unit level
- 12.6.3.2 312BAt Sub-equipment level (module, PCB,…)
- 12.6.3.3 313BAt component level (module, PCB,…)
- 12.6.3.4 314BComplementary activities to support a verification by similarity
- 12.7.1.1 315BOverview
- 12.7.1.2 316BOptical instrument definition and sensitive components
- 12.7.1.3 317BTypical instrument architecture and accommodation on the spacecraft
- 12.7.1.4 318BGeneral design rules w.r.t. shock
- 12.7.1.5 319BVerification logic w.r.t. shock
- 12.7.2.1 320BOverview
- 12.7.2.2 321BPropulsion sub-system description
- 12.7.2.3 322BPropulsion shock source
- 12.7.2.4 323BGeneral design rules
- 12.7.2.5 324BVerification of the propulsion sub-system w.r.t. shock environment
- 13.3.2.1 325BTest configuration
- 13.3.2.2 326BShock test required by Launcher Authority
- 13.3.2.3 327BShock test required by Spacecraft
- 13.3.2.4 328BTest sequence
- 13.3.2.5 329BSystem test specificities
- 13.3.3.1 330BTest facility presentation
- 13.3.3.2 331BTest sequence
- 13.3.4.1 332BTest facility presentation
- 13.3.4.2 333BTest sequence
- 13.3.5.1 334BIntroduction
- 13.3.5.2 335BTest facility presentation
- 13.3.5.3 336BShaker test specificities
- 13.4.1.1 337BPiezoelectric accelerometers (PE)
- 13.4.1.2 338BPiezoelectric accelerometers with integrated electronics (IEPE)
- 13.4.1.3 339BPiezoresistive accelerometers (PR)
- 13.4.1.4 340BShock sensor selection criteria
- 13.4.1.5 341BCharge amplifiers
- 13.4.1.6 342BAccelerometer mounting
- 13.4.1.7 343BAccelerometer cabling
- 13.4.2.1 344BOverview
- 13.4.2.2 345BType of resistance elements
- 13.4.2.3 346BGauge size
- 13.4.2.4 347BConditions of bonding (gluing or adhesion) of the strain gauge to the structure
- 13.4.2.5 348BSensitivity
- 13.4.2.6 349BFactors affecting optimum excitation
- 13.4.2.7 350BThermal Considerations
- 13.4.2.8 351BPotential Error Sources
- 13.4.5.1 352BOverview
- 13.4.5.2 353BFar field and mid field measurements
- 13.4.5.3 354BNear field measurements
- 13.4.5.4 355BConcerns with acceleration measurement with transducers: zero shift during shock, or dynamic offset
- 13.4.5.5 356BConcerns with strain measurement via cables glued to the structure
- 13.4.5.6 357BAnalog versus digital
- 13.4.5.7 358BPreventive techniques for clean measurement
- 14.4.2.1 359BOverview
- 14.4.2.2 360BShort-time Fourier transform
- 14.4.2.3 361BWavelet Transform (WT)
- 14.4.3.1 362BOverview
- 14.4.3.2 363BSpectrogram
- 14.4.3.3 364BWigner-Ville Distribution (WVD)
- 14.4.3.4 365BPseudo Wigner-Ville Distribution (PWVD)
- 14.4.3.5 366BSmoothed-Pseudo Wigner-Ville Distribution
- 15.3.2.1 367BOverview
- 15.3.2.2 368BSignal duration
- 15.3.2.3 369BBackground noise
- 15.3.2.4 370BData sampling
- 15.5.3.1 371BOverview
- 15.5.3.2 372BPower line pick-up cleaning principle
- 15.5.3.3 373BPower line pick-up cleaning steps
- 15.5.3.4 374BPrecautions
- 17.5.2.1 375BRelay
- 17.5.2.2 376BQuartz
- 17.5.2.3 377BMagnetic component (RM), transformer and self
- 17.5.2.4 378BHybrid
- 17.5.2.5 379BTantalum capacitor
- 17.5.2.6 380BHeavy or large component
- 17.5.2.7 381BOptical components and connectors
- 17.5.2.8 382BComponents mounted on low insertion force DIP socket
- 17.5.2.9 383BMobile Particles in the cavities of electronic components
- 17.5.2.10 384BSynthesis on threshold levels
- 17.5.3.1 385BOverview
- 17.5.3.2 386BRF channel filters (IMUX, OMUX,…)
- 17.5.3.3 387BIso-static mount and bonding
- 18.2.4.1 388BOverview
- 18.2.4.2 389BMethod 1 - Transient excitation of unit-plate coupled system
- 18.2.4.3 390BMethod 2 – Base transient excitation of the unit
- 18.2.4.4 391BMethod 3 - Modal solutions
- 18.2.4.5 392BExample of advanced transient (method 2) and spectrum response analyses (method 3B)
- 18.3.1.1 393BVerification methodology
- 18.3.1.2 394BValidation for structural parts
- 18.3.1.3 395BValidation for component mounting technologies
- 18.3.1.4 396BValidation for acceleration sensitive components
- 18.3.1.5 397BGeneral considerations on equipment design and verification w.r.t. shock
- 18.3.1.6 398BImportant considerations for robust equipment design w.r.t. shock
- 18.3.1.7 399BSDRA example 1 – Damage assessment of a large hybrid on PCB
- 18.3.1.8 400BSDRA example 2 – Damage assessment of relay mounted on a PCB
- 18.3.2.1 401BVerification methodology
- 18.3.2.2 402BBearing applications
- 18.3.2.3 403BMethods of Bearing Preloading
- 18.3.2.4 404BBearing Damage
- 18.3.2.5 405BAnalysis of Bearing Loads, Deflections and Stresses
- 18.3.2.6 406BConsequences of dynamic behaviour
- 18.3.2.7 407BLogic for Allowable Stresses Resulting from Shock
- 18.3.2.8 408BDerivation of guidelines for SDRA of bearings
- 18.3.2.9 409BGuidelines for calculating allowable shock-induced peak Hertzian contact stress levels and bearing gapping
- 18.3.2.10 410BRole of the Lubricant
- 18.3.2.11 411BExamples and Application of Method
- 18.3.2.12 412BSDRA example 1 – MSG Scan Mirror Bearing
- 18.3.2.13 413BSDRA example 2 – MSG Scan Mirror Bearing – Higher loads inducing gapping
- 18.3.3.1 414BVerification methodology
- 18.3.3.2 415BSDRA Example 1 – Valve with mechanical “stop-end”
- 18.3.3.3 416BSDRA Example 2 – Valve without mechanical “stop-end”
- 18.3.4.1 417BVerification methodology
- 18.3.4.2 418BEvaluation of stress induced by the shock transient
- 18.3.4.3 419BStructural brittle materials
- 18.3.4.4 420BSDRA example – Mirror mounted on “mirror cell” and ISM [Go to Page]