Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(621)
(599)
(55)
(234)
(1006)
(696)
(2183)
(117)
(95207)
(63)
(584)
(124)
(33)
(21)
(20)
(96195)
(17)
(1)
(374)
(325)
(7075)
(241)
(21)
(6)
(1667)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All

Content Description

Polycarbonate Glazing Systems: An Energy-Efficient Daylighting Solution, 2024
CEU: 0.1 | CEU Code: AM-EN-183701-0823

Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

Learning Objectives

  • Describe the manufacturing process of multiwall polycarbonate and explain how thermoplastic materials can be recycled, thereby reducing production waste.
  • Discuss the high strength-to-weight ratio that makes it lighter to transport and easier to handle, and requires less structural support, resulting in fuel, labor, and material savings.
  • Explain how multiwall polycarbonate's high resistance to impact provides occupant and building protection against vandalism and storm damage, offering increased safety and structural integrity.
  • Identify how multiwall polycarbonate improves thermal efficiency, increasing occupant comfort and well-being.
  • Discuss how multiwall polycarbonate creates soft, diffused, even natural daylight, which facilitates increased occupant health and productivity and results in more comfortable interior environments.

Faculty BIO

Tim has 10+ years of experience in the building and construction industry, with an emphasis on glazing and fenestration. In addition to his time at AmeriLux, Tim has design experience practicing Architecture in the state of Wisconsin and working as a window designer for a large Architectural Grade window manufacturer.
X
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100