Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(599)
(55)
(234)
(1006)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(319)
(6938)
(241)
(21)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    A1033-10 Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations
    Edition: 2010
    $113.57
    Unlimited Users per year

Description of ASTM-A1033 2010

ASTM A1033 - 10

Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations

Active Standard ASTM A1033 | Developed by Subcommittee: A01.13

Book of Standards Volume: 01.03




ASTM A1033

Significance and Use

This practice is used to provide steel phase transformation data required for use in numerical models for the prediction of microstructures, properties, and distortion during steel manufacturing, forging, casting, heat treatment, and welding. Alternatively, the practice provides end users of steel and fabricated steel products the phase transformation data required for selecting steel grades for a given application by determining the microstructure resulting from a prescribed thermal cycle.

There are available several computer models designed to predict the microstructures, mechanical properties, and distortion of steels as a function of thermal processing cycle. Their use is predicated on the availability of accurate and consistent thermal and transformation strain data. Strain, both thermal and transformation, developed during thermal cycling is the parameter used in predicting both microstructure and properties, and for estimating distortion. It should be noted that these models are undergoing continued development. This process is aimed, among other things, at establishing a direct link between discrete values of strain and specific microstructure constituents in steels. This practice describes a standardized method for measuring strain during a defined thermal cycle.

This practice is suitable for providing data for computer models used in the control of steel manufacturing, forging, casting, heat-treating, and welding processes. It is also useful in providing data for the prediction of microstructures and properties to assist in steel alloy selection for end-use applications.

This practice is suitable for providing the data needed for the construction of transformation diagrams that depict the microstructures developed during the thermal processing of steels as functions of time and temperature. Such diagrams provide a qualitative assessment of the effects of changes in thermal cycle on steel microstructure. Appendix X2 describes construction of these diagrams.

It should be recognized that thermal and transformation strains, which develop in steels during thermal cycling, are sensitive to chemical composition. Thus, anisotropy in chemical composition can result in variability in strain, and can affect the results of strain determinations, especially determination of volumetric strain. Strains determined during cooling are sensitive to the grain size of austenite, which is determined by the heating cycle. The most consistent results are obtained when austenite grain size is maintained between ASTM grain sizes of 5 to 8. Finally, the eutectoid carbon content is defined as 0.8 % for carbon steels. Additions of alloying elements can change this value, along with Ac 1 and Ac 3 temperatures. Heating cycles need to be employed, as described below, to ensure complete formation of austenite preceding strain measurements during cooling.

1. Scope

1.1 This practice covers the determination of hypoeutectoid steel phase transformation behavior by using high-speed dilatometry techniques for measuring linear dimensional change as a function of time and temperature, and reporting the results as linear strain in either a numerical or graphical format.

1.2 The practice is applicable to high-speed dilatometry equipment capable of programmable thermal profiles and with digital data storage and output capability.

1.3 This practice is applicable to the determination of steel phase transformation behavior under both isothermal and continuous cooling conditions.

1.4 This practice includes requirements for obtaining metallographic information to be used as a supplement to the dilatometry measurements.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E3 Guide for Preparation of Metallographic Specimens

E112 Test Methods for Determining Average Grain Size

E407 Practice for Microetching Metals and Alloys


Keywords

dilatometry; phase transformations; steel; strain; Carbon steel; Continuous coating transformation data; Dilatometer method; Dimensional change; High speed dilatometry techniques; Hypoeuctectoid steel phase transformations; Isothermal conditions/testing; Low-alloy steel; Microstructures; Phase analysis; Quantitative analysis/measurement; Steel bars ;


ICS Code

ICS Number Code 77.040.99 (Other methods of testing metals)


DOI: 10.1520/A1033-10

ASTM International is a member of CrossRef.

ASTM A1033

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,898.91 Buy
VAR
ASTM
[+] $896.68 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X