FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-A320/A320M 2015ASTM A320/A320M-15aHistorical Standard: Standard Specification for Alloy-Steel and Stainless Steel Bolting for Low-Temperature ServiceASTM A320/A320MScope 1.1 This specification2 covers alloy steel bolting materials and bolting components for pressure vessels, valves, flanges, and fittings for low-temperature service. See Specification A962/A962M for the definition of bolting. The bars shall be hot-wrought and may be further processed by centerless grinding or by cold drawing. Austenitic stainless steel may be solution annealed or annealed and strain-hardened. When strain hardened austenitic stainless steel is ordered, the purchaser should take special care to ensure that Appendix X1 is thoroughly understood. 1.2 Several grades are covered, including both ferritic and austenitic steels designated L7, B8, etc. Selection will depend on design, service conditions, mechanical properties, and low-temperature characteristics. The mechanical requirements of Table 1 indicate the diameters for which the minimum mechanical properties apply to the various grades and classes, and Table 2 stipulates the requirements for Charpy impact energy absorption. The manufacturer should determine that the material can conform to these requirements before parts are manufactured. For example, when Grade L43 is specified to meet the Table 2 impact energy values at −150 °F [−101 °C], additional restrictions (such as procuring a steel with lower P and S contents than might normally be supplied) in the chemical composition for AISI 4340 are likely to be required. Note 1: The committee formulating this specification has included several grades of material that have been rather extensively used for the present purpose. Other compositions will be considered for inclusion by the committee from time to time as the need becomes apparent. Users should note that hardenability of some of the grades mentioned may restrict the maximum size at which the required mechanical properties are obtainable.
(A) These upper diameter limits were established on the basis that these were the largest sizes commonly
available that consistently met specification property limits. They are not intended as absolute limits beyond which bolting materials could no longer be certified to the
specification.
(B) To meet the tensile requirements, the Brinell hardness shall not be less than 200 HBW or 93 HRB.
(C) Class 1 products are made from solution-treated material. Class 1A products are solution treated in the
finished condition for corrosion resistance; heat treatment is critical for enhancing this physical property and meeting the mechanical property requirements. Class 2 products are made from
solution-treated material that has been strain hardened. Austenitic steels in the strain-hardened condition may not show uniform properties throughout the cross section, particularly in sizes
over 3/4 in. [20 mm] in diameter.
(D) For sizes 3/4 in. [20 mm] in diameter and smaller, a maximum hardness of 241 HBW
(100 HRB) is permitted.
(A) See 6.2.1.1 for permitted exemptions.
1.3 The following referenced general requirements are indispensable for application of this specification: Specification A962/A962M. 1.4 Nuts for use with bolting are covered in Section 10 and the nut material shall be impact tested. 1.5 Supplementary Requirements are provided for use at the option of the purchaser. The supplementary requirements shall apply only when specified in the purchase order or contract. 1.6 This specification is expressed in both inch-pound units and SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI) units, the inch-pound units shall apply. 1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Keywords additional elements; austenitic stainless steel; bolts—steel; chromium-molybdenum steel; bolting components—steel; markings on fittings; nickel-chromium-molybdenum alloy steel; pressure vessel service; stainless steel bolting; starting material; steel bars—alloy; steel bolting; steel flanges; steel valves; temperature service applications—low ; ICS Code ICS Number Code 21.060.01 (Fasteners in general) DOI: 10.1520/A0320_A0320M-15A This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|