FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-B545 2013ASTM B545 - 13Standard Specification for Electrodeposited Coatings of TinActive Standard ASTM B545 | Developed by Subcommittee: B08.06 Book of Standards Volume: 02.05 ASTM B545Abstract This specification covers the requirements for electrodeposited tin coatings applied to metallic articles to provide a low contact resistance surface, to protect against corrosion, to facilitate soldering, to provide anti-galling properties, and to be a stop-off coating in the nitriding of high-strength steels. This specification does not cover hot-dipped tin or other non-electrodeposited coatings, and mill products. Coatings shall be grouped into six service classes, which is based on the minimum thickness and severity of service required for the coating, and three surface appearance types, which is based on the type electroplating process employed. The surface appearance types are matte tin electrodeposits, bright tin electrodeposits, and flow-brightened electrodeposits. Coatings shall be sampled, tested and conform accordingly to specified requirements as to appearance, purity, local and mean thickness, integrity (including gross defects, mechanical damage, and porosity), adhesion, solderability, and hydrogen embrittlement relief. This abstract is a brief summary of the referenced standard. It is informational only and not an official part of the standard; the full text of the standard itself must be referred to for its use and application. ASTM does not give any warranty express or implied or make any representation that the contents of this abstract are accurate, complete or up to date. 1. Scope 1.1 This specification covers the requirements for electrodeposited (electroplated) coatings of tin applied to metallic articles. Tin coatings are used to provide a low contact-resistance surface, to protect against corrosion (see 1.2 ), to facilitate soldering, to provide anti-galling properties, and to be a stopoff coating in the nitriding of high-strength steels. 1.2 Some corrosion can be expected from tin coatings exposed outdoors. In normal indoor exposure, tin is protective on iron, steel, nickel, copper, and their alloys. Corrosion can be expected at discontinuities in the coating (such as pores) due to galvanic couples formed between the tin and the underlying metal through the discontinuities, especially in humid atmospheres. Porosity increases as the coating thickness decreases, so that minimum thicknesses must be specified for each application. Parts coated with tin can be assembled safely in contact with iron and steel, tin-coated aluminum, yellow chromated zinc, cadmium, and solder coatings. (See X5.1 for oxidation and corrosion properties.) 1.3 This specification applies to electroplated coatings of not less than 99?% tin (except where deliberately alloyed for special purposes, as stated in X6.3 ) obtained from any of the available tin electroplating processes (see 4.3 ). 1.4 This specification does not apply to hot-dipped tin or other non-electrodeposited coating; it also does not apply to mill products. For mill products, refer to Specifications A623 or A623M . 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards A623 Specification for Tin Mill Products, General Requirements A623M Specification for Tin Mill Products, General Requirements [Metric] B32 Specification for Solder Metal B183 Practice for Preparation of Low-Carbon Steel for Electroplating B242 Guide for Preparation of High-Carbon Steel for Electroplating B246 Specification for Tinned Hard-Drawn and Medium-Hard-Drawn Copper Wire for Electrical Purposes B281 Practice for Preparation of Copper and Copper-Base Alloys for Electroplating and Conversion Coatings B320 Practice for Preparation of Iron Castings for Electroplating B322 Guide for Cleaning Metals Prior to Electroplating B374 Terminology Relating to Electroplating B487 Test Method for Measurement of Metal and Oxide Coating Thickness by Microscopical Examination of Cross Section B499 Test Method for Measurement of Coating Thicknesses by the Magnetic Method: Nonmagnetic Coatings on Magnetic Basis Metals B504 Test Method for Measurement of Thickness of Metallic Coatings by the Coulometric Method B507 Practice for Design of Articles to Be Electroplated on Racks B542 Terminology Relating to Electrical Contacts and Their Use B558 Practice for Preparation of Nickel Alloys for Electroplating B567 Test Method for Measurement of Coating Thickness by the Beta Backscatter Method B568 Test Method for Measurement of Coating Thickness by X-Ray Spectrometry B571 Practice for Qualitative Adhesion Testing of Metallic Coatings B602 Test Method for Attribute Sampling of Metallic and Inorganic Coatings B659 Guide for Measuring Thickness of Metallic and Inorganic Coatings B678 Test Method for Solderability of Metallic-Coated Products B697 Guide for Selection of Sampling Plans for Inspection of Electrodeposited Metallic and Inorganic Coatings B762 Test Method of Variables Sampling of Metallic and Inorganic Coatings B765 Guide for Selection of Porosity and Gross Defect Tests for Electrodeposits and Related Metallic Coatings B809 Test Method for Porosity in Metallic Coatings by Humid Sulfur Vapor (Flowers-of-Sulfur) B849 Specification for Pre-Treatments of Iron or Steel for Reducing Risk of Hydrogen Embrittlement B850 Guide for Post-Coating Treatments of Steel for Reducing the Risk of Hydrogen Embrittlement B851 Specification for Automated Controlled Shot Peening of Metallic Articles Prior to Nickel, Autocatalytic Nickel, or Chromium Plating, or as Final Finish D3951 Practice for Commercial Packaging Keywords electrodeposited tin; electroplated tin; tin; tin coatings; ICS Code ICS Number Code 25.220.40 (Metallic coatings) DOI: 10.1520/B0545 ASTM International is a member of CrossRef. ASTM B545The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|