FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-B812 2013ASTM B812 - 96(2013)Standard Test Method for Resistance to Environmental Degradation of Electrical Pressure Connections Involving Aluminum and Intended for Residential ApplicationsActive Standard ASTM B812 | Developed by Subcommittee: B02.11 Book of Standards Volume: 02.04 ASTM B812Significance and Use 5.1 The principal underlying the test is the sensitivity of the electrical contact interface to temperature and humidity cycling that electrical pressure connection systems experience as a result of usage and installation environment. The temperature cycling may cause micromotion at the mating electrical contact surfaces which can expose fresh metal to the local ambient atmosphere. The humidity exposure is known to facilitate corrosion on freshly exposed metal surfaces. Thus, for those connection systems that do not maintain stable metal-to-metal contact surfaces under the condition of thermal cycling and humidity exposure, repeated sequences of these exposures lead to degradation of the contacting surface indicated by potential drop increase. 5.2 The test is of short duration relative to the expected life of connections in residential usage. Stability of connection resistance implies resistance to deterioration due to environmental conditions encountered in residential service. Increasing connection resistance as a result of the test exposure indicates deterioration of electrical contact interfaces. Assurance of long term reliability and safety of connection types that deteriorate requires further evaluation for specific specified environments and applications. 5.3 Use It is recommended that this test method be used in one of two ways. First, it may be used to evaluate and report the performance of a particular connection system. For such use, it is appropriate to report the results in a summary (or tabular) format such as shown in Section 17 , together with the statement The results shown in the summary (or table) were obtained for (insert description of connection) when tested in accordance with Test Method B812. Second, it may be used as the basis for specification of acceptability of product. For this use, the minimum test time and the maximum allowable increase in potential drop must be established by the specifier. Specification of connection systems in accordance with this use of the standard test method would be of the form: The maximum potential drop increase for any connection, when tested in accordance with Test Method B812 for a period of weeks, shall be mV relative to the reference connections. Connection systems that are most resistant to thermal-cycle/humidity deterioration, within the limitations of determination by this test method, show no increase in potential drop, relative to the reference connections, when tested for indefinite time. Connections that are less resistant to thermal-cycle/humidity conditions applied by this test will demonstrate progressive increases in potential drop with increasing time on test. Thus, the following examples of specifications are in the order of most stringent (No. 1) to least stringent (No. 3).
1. Scope 1.1 This test method covers all residential pressure connection systems. Detailed examples of application to specific types of connection systems, set-screw neutral bus connectors and twist-on wire-splicing connectors, are provided in Appendix X1 and Appendix X2 . 1.2 The purpose of this test method is to evaluate the performance of residential electrical pressure connection systems under conditions of cyclic temperature change (within rating) and high humidity. 1.3 The limitations of the test method are as follows: 1.3.1 This test method shall not be considered to confirm a specific lifetime in application environments. 1.3.2 The applicability of this test method is limited to pressure connection systems rated at or below 600 V d-c or a-c RMS. 1.3.3 This test method is limited to temperature and water vapor exposure in addition to electrical current as required to measure connection resistance. 1.3.4 This test method does not evaluate degradation which may occur in residential applications due to exposure of the electrical connection system to additional environmental constituents such as (but not limited to) the following examples: 1.3.4.1 Household chemicals (liquid or gaseous) such as ammonia, bleach, or other cleaning agents. 1.3.4.2 Chemicals as may occur due to normal hobby or professional activities such as photography, painting, sculpture, or similar activities. 1.3.4.3 Environments encountered during construction or remodeling such as direct exposure to rain, uncured wet concrete, welding or soldering fluxes and other agents. 1.3.5 This test method is limited to evaluation of pressure connection systems. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety and health practices, and determine the applicability of regulatory limitations prior to use. 1.5 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to electrical current flow under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual installation conditions or under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.
ASTM Standards B542 Terminology Relating to Electrical Contacts and Their Use Underwriter Laboratory Standards UL486C Standard for Splicing Wire ConnectorsNEC Document ANSI/NFPA70 National Electric Code Available from National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02169-7471, http://www.nfpa.org.Keywords aluminum; aluminum connections; contacts; environmental testing; humidity testing; mixed environmental testing; mixed stress testing; neutral bar; pressure connection; stress testing; thermal cycling; twist-on connector; ICS Code ICS Number Code 29.120.20 (Connecting devices) DOI: 10.1520/B0812 ASTM International is a member of CrossRef. ASTM B812This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|