FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-C1045 2007ASTM C1045 - 07Standard Practice for Calculating Thermal Transmission Properties Under Steady-State ConditionsActive Standard ASTM C1045 | Developed by Subcommittee: C16.30 Book of Standards Volume: 04.06 ASTM C10451. Scope 1.1 This practice provides the user with a uniform procedure for calculating the thermal transmission properties of a material or system from data generated by steady state, one dimensional test methods used to determine heat flux and surface temperatures. This practice is intended to eliminate the need for similar calculation sections in Test Methods C 177, C 335, C 518, C 1033, C 1114 and C 1363 and Practices C 1043 and C 1044 by permitting use of these standard calculation forms by reference. 1.2 The thermal transmission properties described include: thermal conductance, thermal resistance, apparent thermal conductivity, apparent thermal resistivity, surface conductance, surface resistance, and overall thermal resistance or transmittance. 1.3 This practice provides the method for developing the apparent thermal conductivity as a function of temperature relationship for a specimen from data generated by standard test methods at small or large temperature differences. This relationship can be used to characterize material for comparison to material specifications and for use in calculation programs such as Practice C 680. 1.4 The SI unit values used in this practice are considered standard. 1.5 This practice includes a discussion of the definitions and underlying assumptions for the calculation of thermal transmission properties. Tests to detect deviations from these assumptions are described. This practice also considers the complicating effects of uncertainties due to the measurement processes and material variability. See Section 7. 1.6 This practice is not intended to cover all possible aspects of thermal properties data base development. For new materials, the user should investigate the variations in thermal properties seen in similar materials. The information contained in Section 7, the Appendix and the technical papers listed in the References section of this practice may be helpful in determining whether the material under study has thermal properties that can be described by equations using this practice. Some examples where this method has limited application include: ( 1 ) the onset of convection in insulation as described in Reference (1) ; ( 2 ) a phase change of one of the insulation system components such as a blowing gas in foam; and ( 3 ) the influence of heat flow direction and temperature difference changes for reflective insulations.
ASTM Standards C168 Terminology Relating to Thermal Insulation C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus C335 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus C680 Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs C1033 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation Installed Vertically C1043 Practice for Guarded-Hot-Plate Design Using Circular Line-Heat Sources C1044 Practice for Using a Guarded-Hot-Plate Apparatus or Thin-Heater Apparatus in the Single-Sided Mode C1058 Practice for Selecting Temperatures for Evaluating and Reporting Thermal Properties of Thermal Insulation C1114 Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus C1199 Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods C1363 Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process Keywords calculation; thermal conductance; thermal conductivity; thermal properties; thermal resistance; thermal resistivity; thermal transmission; ICS Code ICS Number Code 17.200.10 (Heat. Calorimetry) DOI: 10.1520/C1045-07 ASTM International is a member of CrossRef. ASTM C1045The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|