Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94624)
(54)
(568)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(315)
(6731)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1161-13 Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
    Edition: 2013
    $113.57
    Unlimited Users per year

Description of ASTM-C1161 2013

ASTM C1161 - 13

Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature

Active Standard ASTM C1161 | Developed by Subcommittee: C28.01

Book of Standards Volume: 15.01




ASTM C1161

Significance and Use

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes. This test method is intended to be used with ceramics whose strength is 50 MPa (~7 ksi) or greater.

4.2 The flexure stress is computed based on simple beam theory with assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one fiftieth of the beam thickness. The homogeneity and isotropy assumption in the standard rule out the use of this test for continuous fiber-reinforced ceramics.

4.3 Flexural strength of a group of test specimens is influenced by several parameters associated with the test procedure. Such factors include the loading rate, test environment, specimen size, specimen preparation, and test fixtures. Specimen sizes and fixtures were chosen to provide a balance between practical configurations and resulting errors, as discussed in MIL-STD?1942?(MR) and Refs (1) and (2) . 4 Specific fixture and specimen configurations were designated in order to permit ready comparison of data without the need for Weibull-size scaling.

4.4 The flexural strength of a ceramic material is dependent on both its inherent resistance to fracture and the size and severity of flaws. Variations in these cause a natural scatter in test results for a sample of test specimens. Fractographic analysis of fracture surfaces, although beyond the scope of this standard, is highly recommended for all purposes, especially if the data will be used for design as discussed in MIL-STD-1942 (MR) and Refs (25) and Practices C1322 and C1239.

4.5 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature and fracture toughness testing, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes.

4.6 This method determines the flexural strength at ambient temperature and environmental conditions. The flexural strength under ambient conditions may or may not necessarily be the inert flexural strength.

Note 7 time dependent effects may be minimized through the use of inert testing atmosphere such as dry nitrogen gas, oil, or vacuum. Alternatively, testing rates faster than specified in this standard may be used. Oxide ceramics, glasses, and ceramics containing boundary phase glass are susceptible to slow crack growth even at room temperature. Water, either in the form of liquid or as humidity in air, can have a significant effect, even at the rates specified in this standard. On the other hand, many ceramics such as boron carbide, silicon carbide, aluminum nitride and many silicon nitrides have no sensitivity to slow crack growth at room temperature and the flexural strength in laboratory ambient conditions is the inert flexural strength.

1. Scope

1.1 This test method covers the determination of flexural strength of advanced ceramic materials at ambient temperature. Four-point 1 / 4 point and three-point loadings with prescribed spans are the standard as shown in Fig. 1 . Rectangular specimens of prescribed cross-section sizes are used with specified features in prescribed specimen-fixture combinations. Test specimens may be 3 by 4 by 45 to 50 mm in size that are tested on 40 mm outer span four-point or three-point fixtures. Alternatively, test specimens and fixture spans half or twice these sizes may be used. The method permits testing of machined or as-fired test specimens. Several options for machining preparation are included: application matched machining, customary procedure, or a specified standard procedure. This method describes the apparatus, specimen requirements, test procedure, calculations, and reporting requirements. The test method is applicable to monolithic or particulate- or whisker-reinforced ceramics. It may also be used for glasses. It is not applicable to continuous fiber-reinforced ceramic composites.

1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C1239 Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics

C1322 Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics

C1368 Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Strength Testing at Ambient Temperature

E4 Practices for Force Verification of Testing Machines

E337 Test Method for Measuring Humidity with a Psychrometer (the Measurement of Wet- and Dry-Bulb Temperatures)

Military Standard

MIL-STD-1942 (MR) Flexural Strength of High Performance Ceramics at Ambient Temperature Available from Standardization Documents Order Desk, DODSSP, Bldg. 4, Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098, http://www.dodssp.daps.mil.

Keywords

advanced ceramics; flexural strength; four-point flexure; three-point flexure ;


ICS Code

ICS Number Code 81.060.20 (Ceramic products)


DOI: 10.1520/C1161

ASTM International is a member of CrossRef.

ASTM C1161

The following editions for this book are also available...

Format Year Publisher Type Title Annual Price
2002
ASTM
Model Standard
$113.57 Buy
2002
ASTM
Model Standard
$113.57 Buy
2008
ASTM
Model Standard
$113.57 Buy
1996
ASTM
Model Standard
$113.57 Buy
2008
ASTM
Model Standard
$113.57 Buy
2002
ASTM
Model Standard
$113.57 Buy
2018
ASTM
Model Standard
$113.57 Buy
2002
ASTM
Model Standard
$113.57 Buy
2002
ASTM
Model Standard
$113.57 Buy
2018
ASTM
Model Standard
$94.85 Buy
2023
ASTM
Model Standard
$94.85 Buy

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,011.53 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X