Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(599)
(55)
(234)
(1006)
(690)
(2183)
(117)
(95207)
(63)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(322)
(6938)
(241)
(21)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1402-04(2009) Standard Guide for High-Resolution Gamma-Ray Spectrometry of Soil Samples
    Edition: 2009
    $103.58
    Unlimited Users per year

Description of ASTM-C1402 2009

ASTM C1402 - 04(2009)

Standard Guide for High-Resolution Gamma-Ray Spectrometry of Soil Samples

Active Standard ASTM C1402 | Developed by Subcommittee: C26.05

Book of Standards Volume: 12.01




ASTM C1402

Significance and Use

Gamma-ray spectrometry of soil samples is used to identify and quantify certain gamma-ray emitting radionuclides. Use of a germanium semiconductor detector is necessary for high-resolution gamma-ray measurements.

Much of the data acquisition and analysis can be automated with the use of commercially available systems that include both hardware and software. For a general description of the typical hardware in more detail than discussed in Section 6, see Ref (19) .

Both qualitative and quantitative analyses may be performed using the same measurement data.

The procedures described in this guide may be used for a wide variety of activity levels, from natural background levels and fallout-type problems, to determining the effectiveness of cleanup efforts after a spill or an industrial accident, to tracing contamination at older production sites, where wastes were purposely disposed of in soil. In some cases, the combination of radionuclide identities and concentration ratios can be used to determine the source of the radioactive materials.

Collecting samples and bringing them to a data acquisition system for analysis may be used as the primary method to detect deposition of radionuclides in soil. For obtaining a representative set of samples that cover a particular area, see Practice C 998 . Soil can also be measured by taking the data acquisition system to the field and measuring the soil in place (in situ). In situ measurement techniques are not discussed in this guide.

1. Scope

1.1 This guide covers the identification and quantitative determination of gamma-ray emitting radionuclides in soil samples by means of gamma-ray spectrometry. It is applicable to nuclides emitting gamma rays with an approximate energy range of 20 to 2000 keV. For typical gamma-ray spectrometry systems and sample types, activity levels of about 5 Bq (135 pCi) are measured easily for most nuclides, and activity levels as low as 0.1 Bq (2.7 pCi) can be measured for many nuclides. It is not applicable to radionuclides that emit no gamma rays such as the pure beta-emitting radionuclides hydrogen-3, carbon-14, strontium-90, and becquerel quantities of most transuranics. This guide does not address the in situ measurement techniques, where soil is analyzed in place without sampling. Guidance for in situ techniques can be found in Ref (1) and (2) . This guide also does not discuss methods for determining lower limits of detection. Such discussions can be found in Refs (3) , (4) , (5) , and (6) .

1.2 This guide can be used for either quantitative or relative determinations. For quantitative assay, the results are expressed in terms of absolute activities or activity concentrations of the radionuclides found to be present. This guide may also be used for qualitative identification of the gamma-ray emitting radionuclides in soil without attempting to quantify their activities. It can also be used to only determine their level of activities relative to each other but not in an absolute sense. General information on radioactivity and its measurement may be found in Refs (7) , (8) , (9) , (10) , and (11) and Standard Test Methods E 181 . Information on specific applications of gamma-ray spectrometry is also available in Refs (12) or (13) . Practice D 3649 may be a valuable source of information.

1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.4 This standard may involve hazardous material, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

C998 Practice for Sampling Surface Soil for Radionuclides

C999 Practice for Soil Sample Preparation for the Determination of Radionuclides

C1009 Guide for Establishing a Quality Assurance Program for Analytical Chemistry Laboratories Within the Nuclear Industry

D3649 Practice for High-Resolution Gamma-Ray Spectrometry of Water

E181 Test Methods for Detector Calibration and Analysis of Radionuclides

ANSI Standards

ANSI/IEEE-645 Test Procedures for High Purity Germanium Detectors for Ionizing Radiation

Keywords

Gamma-ray spectrometry; High-resolution gamma-ray spectral analysis; Soil (radioactive analysis); Soil sampling;


ICS Code

ICS Number Code 13.080.20 (Physical properties of soil)


DOI: 10.1520/C1402-04R09

ASTM International is a member of CrossRef.

ASTM C1402

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,152.58 Buy
VAR
ASTM
[+] $1,737.94 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X