FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-C1493 2019ASTM C1493-19Active Standard: Standard Test Method for Non-Destructive Assay of Nuclear Material in Waste by Passive and Active Neutron Counting Using a Differential Die-Away SystemASTM C1493Scope 1.1 This test method covers a system that performs nondestructive assay (NDA) of uranium or plutonium, or both, using the active, differential die-away technique (DDT), and passive neutron coincidence counting. Results from the active and passive measurements are combined to determine the total amount of fissile and spontaneously-fissioning material in drums of scrap or waste. Corrections are made to the measurements for the effects of neutron moderation and absorption, assuming that the effects are averaged over the volume of the drum and that no significant lumps of nuclear material are present. These systems are most widely used to assay low-level and transuranic waste, but may also be used for the measurement of scrap materials. The examples given within this test method are specific to the second-generation Los Alamos National Laboratory (LANL) passive-active neutron assay system. 1.1.1 In the active mode, the system measures fissile isotopes such as 235U and 239Pu. The neutrons from a pulsed, 14-MeV neutron generator are thermalized to induce fission in the assay item. Between generator pulses, the system detects prompt-fission neutrons emitted from the fissile material. The number of detected neutrons between pulses is proportional to the mass of fissile material. This method is called the differential die-away technique. 1.1.2 In the passive mode, the system detects time-coincident neutrons emitted from spontaneously fissioning isotopes. The primary isotopes measured are 238Pu, 240 Pu, and 242Pu; however, the system may be adapted for use on other spontaneously-fissioning isotopes as well, such as kilogram quantities of 238U. The number of coincident neutrons detected is proportional to the mass of spontaneously-fissioning material. 1.2 The active mode is used to assay fissile material in the following ranges. 1.2.1 For uranium-only bearing items, the DDT can measure the 235U content in the range from about 0.02 to over 100 g. Small mass uranium-bearing items are typically measured using the active mode and only large mass items are measured in passive mode. 1.2.2 For plutonium-only bearing items, the DDT method measures the 239Pu content in the range between about 0.01 and 20 g. 1.3 The passive mode is capable of assaying spontaneously-fissioning nuclei, over a nominal range from 0.05 to 15 g 240Pu equivalent. 1.4 This test method requires knowledge of the relative abundances of the plutonium or uranium isotopes to determine the total plutonium or uranium mass. 1.5 This test method will give biased results when the waste form does not meet the calibration specifications and the measurement assumptions presented in this test method regarding the requirements for a homogeneous matrix, uniform source distribution, and the absence of nuclear material lumps, to the extent that they effect the measurement. 1.6 The complete active and passive assay of a 208 L drum is nominally 10 min or less but either mode can be extended to meet data quality objectives. 1.7 Some improvements to this test method have been reported (1, 2, 3, 4).2 Discussions of these improvements are not included in this test method although improvements continue to occur. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.9 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8. 1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords active; coincidence; differential die-away; neutron counting; passive; pulsed neutron generator; ICS Code ICS Number Code 27.120.30 (Fissile materials and nuclear fuel technology) DOI: 10.1520/C1493-19 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|