Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(580)
(54)
(234)
(988)
(657)
(2134)
(64)
(93854)
(54)
(556)
(124)
(33)
(21)
(20)
(94094)
(3)
(17)
(1)
(351)
(309)
(6548)
(241)
(16)
(6)
(1639)
(16)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    C1773-13 Standard Test Method for Monotonic Axial Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramic Tubular Test Specimens at Ambient Temperature
    Edition: 2013
    $134.78
    Unlimited Users per year

Description of ASTM-C1773 2013

ASTM C1773 - 13

Standard Test Method for Monotonic Axial Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramic Tubular Test Specimens at Ambient Temperature

Active Standard ASTM C1773 | Developed by Subcommittee: C28.07

Book of Standards Volume: 15.01




ASTM C1773

Significance and Use

5.1 This test method provides information on the uniaxial tensile properties and tensile stress-strain response of a ceramic composite tubetensile strength and strain, fracture strength and strain, proportional limit stress and strain, tensile elastic modulus, etc. The information may be used for material development, material comparison, quality assurance, characterization, and design data generation.

5.2 Continuous fiber-reinforced ceramic composites (CFCC) are composed of continuous ceramic-fiber directional (1-D, 2-D, and 3-D) reinforcements in a fine grain-sized (<50 micron) ceramic matrix with controlled porosity. Often these composites have an engineered thin (0.1 to 10 microns) interface coating on the fibers to produce crack deflection and fiber pull-out. These ceramic composites offer high temperature stability, inherent damage tolerance, and high degrees of wear and corrosion resistance. As such, these ceramic composites are particularly suited for aerospace and high temperature structural applications. ( 1 , 2 ) 3

5.3 CFCC components have a distinctive and synergistic combination of material properties, interface coatings, porosity control, composite architecture (1-D, 2-D, and 3-D), and geometric shape that are generally inseparable. Prediction of the mechanical performance of CFCC tubes (particularly with braid and 3-D weave architectures) cannot be made by applying measured properties from flat CFCC plates to the design of tubes. Direct uniaxial tensile strength tests of CFCC tubes are needed to provide reliable information on the mechanical behavior and strength of tube geometries.

5.4 CFCCs generally experience graceful fracture from a cumulative damage process, unlike monolithic advanced ceramics which fracture catastrophically from a single dominant flaw. The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, and any damage accumulation processes. These factors are affected by the composite material composition and variability in material and testingcomponents, reinforcement architecture and volume fraction, porosity content, matrix morphology, interface morphology, methods of material fabrication, test specimen preparation and conditioning, and surface condition.

5.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments.

5.6 For quality control purposes, results derived from standardized tubular tensile test specimens may be considered indicative of the response of the material from which they were taken from, given primary processing conditions and post-processing heat treatments.

1. Scope

1.1 This test method determines the axial tensile strength and stress-strain response of continuous fiber-reinforced advanced ceramic composite tubes at ambient temperature under monotonic loading. This test method is specific to tube geometries, because fiber architecture and specimen geometry factors are often distinctly different in composite tubes, as compared to flat plates.

1.2 In the test method a composite tube/cylinder with a defined gage section and a known wall thickness is fitted/bonded into a loading fixture. The test specimen/fixture assembly is mounted in the testing machine and monotonically loaded in uniaxial tension at ambient temperature while recording the tensile force and the strain in the gage section. The axial tensile strength and the fracture strength are determined from the maximum applied force and the fracture force. The strains, the proportional limit stress, and the tensile modulus of elasticity are determined from the stress-strain data.

1.3 This test method applies primarily to advanced ceramic matrix composite tubes with continuous fiber reinforcement: uni-directional (1-D, filament wound and tape lay-up), bi-directional (2-D, fabric/tape lay-up and weave), and tri-directional (3-D, braid and weave). These types of ceramic matrix composites are composed of a wide range of ceramic fibers (oxide, graphite, carbide, nitride, and other compositions) in a wide range of crystalline and amorphous ceramic matrix compositions (oxide, carbide, nitride, carbon, graphite, and other compositions).

1.4 This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.

1.5 The test method describes a range of test specimen tube geometries based on past tensile testing of ceramic composite tubes. These geometries are applicable to tubes with outer diameters of 10 to 150 mm and wall thicknesses of 1 to 25 mm, where the ratio of the outer diameter-to-wall thickness ( d O /t ) is typically between 5 and 30.

1.5.1 This test method is specific to ambient temperature testing. Elevated temperature testing requires high temperature furnaces and heating devices with temperature control and measurement systems and temperature-capable grips and loading fixtures, which are not addressed in this test standard.

1.6 The test method addresses test equipment, gripping methods, testing modes, allowable bending stresses, interferences, tubular test specimen geometries, test specimen preparation, test procedures, data collection, calculation, reporting requirements, and precision/bias in the following sections.

Section

Scope

1

Referenced Documents

2

Terminology

3

Summary of Test Method

4

Significance and Use

5

Interferences

6

Apparatus

7

Hazards

8

Test Specimens

9

Test Procedure

10

Calculation of Results

11

Report

12

Precision and Bias

13

Keywords

14

Annexes

Interferences

Annex A1

Test Specimen Geometry

Annex A2

Grip Fixtures and Load Train Couplers

Annex A3

Allowable Bending and Load Train Alignment

Annex A4

Test Modes and Rates

Annex A5


1.7 Units The values stated in SI units are to be regarded as standard.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8 .


Keywords

ceramic matrix composite; continuous ceramic fiber composite; cylinders; elastic modulus; modulus of resilience; modulus of toughness; Poissons ratio; tensile strength; tubes;


ICS Code

ICS Number Code 81.060.30 (Advanced ceramics)


DOI: 10.1520/C1773-13

ASTM International is a member of CrossRef.

ASTM C1773

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,011.53 Buy
VAR
ASTM
[+] $7,461.55 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X