ASTM C335/C335M-10
Historical Standard: ASTM C335/C335M-10 Standard Test Method for Steady-State Heat Transfer Properties of Pipe Insulation
SUPERSEDED (see Active link, below)
ASTM C335 / C335M
1. Scope
1.1 This test method covers the measurement of the steady-state heat transfer properties of pipe insulations. Specimen types include rigid, flexible, and loose fill; homogeneous and nonhomogeneous; isotropic and nonisotropic; circular or non-circular cross section. Measurement of metallic reflective insulation and mass insulations with metal jackets or other elements of high axial conductance is included; however, additional precautions must be taken and specified special procedures must be followed.
1.2 The test apparatus for this purpose is a guarded-end or calibrated-end pipe apparatus. The guarded-end apparatus is a primary (or absolute) method. The guarded-end method is comparable, but not identical to ISO 8497.
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.4 When appropriate, or as required by specifications or other test methods, the following thermal transfer properties for the specimen can be calculated from the measured data (see 3.2):
1.4.1 The pipe insulation lineal thermal resistance and conductance,
1.4.2 The pipe insulation lineal thermal transference,
1.4.3 The surface areal resistance and heat transfer coefficient,
1.4.4 The thermal resistivity and conductivity,
1.4.5 The areal thermal resistance and conductance, and
1.4.6 The areal thermal transference.
Note 1In this test method the preferred resistance, conductance, and transference are the lineal values computed for a unit length of pipe. These must not be confused with the corresponding areal properties computed on a unit area basis which are more applicable to flat slab geometry. If these areal properties are computed, the area used in their computation must be reported.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
C168 Terminology Relating to Thermal Insulation
C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
C302 Test Method for Density and Dimensions of Preformed Pipe-Covering-Type Thermal Insulation
C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
C680 Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs
C870 Practice for Conditioning of Thermal Insulating Materials
C1045 Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
C1058 Practice for Selecting Temperatures for Evaluating and Reporting Thermal Properties of Thermal Insulation
E230 Specification and Temperature-Electromotive Force (EMF) Tables for Standardized Thermocouples
ISO Standards
ISO8497 Thermal Insulation-Dermination of Steady State Thermal Transmission Properties of Thermal Insulation for Circular PipesKeywords
apparent thermal conductivity; experimental design; radial heat transfer; steady state heat transfer; thermal resistance; Heating tests--thermal insulation; Insulated flat surfaces/pipes; Pipe thermal insulation; Thermal transmission properties--steady-state;
ICS Code
ICS Number Code 91.100.60 (Thermal and sound insulating materials)
DOI: 10.1520/C0335_C0335M-10
ASTM International is a member of CrossRef.