FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-C900 2013ASTM C900 - 13Standard Test Method for Pullout Strength of Hardened ConcreteActive Standard ASTM C900 | Developed by Subcommittee: C09.64 Book of Standards Volume: 04.02 ASTM C900Significance and Use 5.1 For a given concrete and a given test apparatus, pullout strengths can be related to compressive strength test results. Such strength relationships are affected by the configuration of the embedded insert, bearing ring dimensions, depth of embedment, and the type of aggregate (lightweight or normal weight). Before use, the relationships must be established for each test system and each new concrete mixture. Such relationships are more reliable if both pullout test specimens and compressive strength test specimens are of similar size, consolidated to similar density, and cured under similar conditions.
Note 1 Published reports ( 1- 17 ) 4 by different researchers present their experiences in the use of pullout test equipment. Refer to ACI 228.1R (14) for guidance on establishing a strength relationship and interpreting test results. The Appendix provides a means for comparing pullout strengths obtained
using different configurations.
5.2 Pullout tests are used to determine whether the in-place strength of concrete has reached a specified level so that, for example:
(1) post-tensioning may proceed;
(2) forms and shores may be removed;
(3) structure may be placed into service; or
(4) winter protection and curing may be terminated.
In addition, post-installed pullout tests may be used to estimate the strength of concrete in existing constructions. 5.3 When planning pullout tests and analyzing test results, consideration should be given to the normally expected decrease of concrete strength with increasing height within a given concrete placement in a structural element. 5.4 The measured pullout strength is indicative of the strength of concrete within the region represented by the conic frustum defined by the insert head and bearing ring. For typical surface installations, pullout strengths are indicative of the quality of the outer zone of concrete members and can be of benefit in evaluating the cover zone of reinforced concrete members. 5.5 Cast-in-place inserts require that their locations in the structure be planned in advance of concrete placement. Post-installed inserts can be placed at any desired location in the structure provided the requirements of 7.1 are satisfied. 5.6 This test method is not applicable to other types of post-installed tests that, if tested to failure, do not involve the same failure mechanism and do not produce the same conic frustum as for the cast-in-place test described in this test method ( 16 ) . 1. Scope 1.1 This test method covers determination of the pullout strength of hardened concrete by measuring the force required to pull an embedded metal insert and the attached concrete fragment from a concrete test specimen or structure. The insert is either cast into fresh concrete or installed in hardened concrete. This test method does not provide statistical procedures to estimate other strength properties. 1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this test method. 1.3 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. ( WARNING Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.) 2
ASTM Standards C670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials E4 Practices for Force Verification of Testing Machines E74 Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines Keywords concrete strength; in-place strength; in-place testing; pullout test; ICS Code ICS Number Code 91.100.30 (Concrete and concrete products) DOI: 10.1520/C0900-13 ASTM International is a member of CrossRef. ASTM C900The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|