FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D1319 2020ASTM D1319-20aRedline Standard: Standard Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator AdsorptionASTM D1319Scope 1.1 This test method covers the determination of hydrocarbon types of total aromatics, total olefins, and total saturates in petroleum fractions that distill below 315 °C. Samples containing dark-colored components that interfere in reading the chromatographic bands cannot be analyzed. Note 1: For the determination of olefins below 0.3 % by volume, other test methods are available, such as Test Method D2710. 1.2 This test method is intended for use with full boiling range products. Cooperative data have established that the precision statement does not apply to narrow boiling petroleum fractions near the 315 °C limit. Such samples are not eluted properly, and results are erratic. 1.3 This test method is also applicable to automotive spark-ignition engine fuels which are gasolines with and without blended oxygenates, such as alcohols and ethers (for example MTBE, ethanol) and where gasoline is the primary component by volume in the blend. 1.4 The applicability of this test method to products derived from fossil fuels other than petroleum, such as coal, shale, or tar sands, has not been determined, and the precision statement may or may not apply to such products. 1.5 This test method has two precision statements depicted in Table 3 and Table 4. 1.5.1 Table 3 is applicable to fuels that do not contain oxygenated blending components over the test method concentration working ranges from 5 % to 99 % by volume aromatics, 1 % to 55 % by volume olefins, and 1 % to 95 % by volume saturates in petroleum fractions and with a final boiling point of <315 °C. It may or may not apply to automotive gasolines containing lead antiknock mixtures. 1.5.2 Table 4 precision was derived from an ILS containing only blended oxygenated (for example, MTBE, ethanol) and non-oxygenated automotive spark-ignition engine fuels (gasolines) and is applicable only in the test method concentration working range of 13 % to 40 % by volume aromatics, 4 % to 33 % by volume olefins, and 45 % to 68 % by volume saturates. 1.5.3 Non-oxygenated automotive spark-ignition engine fuels (gasolines) outside the inclusive valid test result reporting concentration ranges of Table 4 may use the precision in Table 3 and its applicable concentration ranges. 1.6 The oxygenated blending components, methanol, ethanol, methyl-tert-butylether (MTBE), tert-amylmethylether (TAME), and ethyl-tert-butylether (ETBE), do not interfere with the determination of hydrocarbon types at concentrations normally found in commercial blends. These oxygenated components are not detected since they elute with the alcohol desorbent. Other oxygenated compounds shall be individually verified. When samples containing oxygenated blending components are analyzed, correct the results to a total-sample basis. 1.7 This test method includes a relative bias section based on Practice D6708 accuracy assessment between Test Method D1319 and Test Method D5769 for total aromatics in spark-ignition engine fuels as a possible Test Method D1319 alternative to Test Method D5769 for U.S. EPA spark-ignition engine fuel regulations reporting. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatic concentration range from 3.3 % to 34.4 % by volume as measured by Test Method D1319 and the distillation temperature T95, at which 95 % of the sample has evaporated, ranges from 149.1 °C to 196.6 °C (300.3 °F to 385.8 °F) when tested according to Test Method D86. 1.7.1 The applicable Test Method D5769 range for total aromatics is 3.7 % to 29.4 % by volume as reported by Test Method D5769 and the distillation temperature T95 values, at which 95 % of the sample has evaporated, when tested according to Test Method D86 is from 149.1 °C to 196.6 °C (300.3 °F to 385.8 °F). 1.7.2 Regulations may change over time and the user is advised to verify current regulatory requirements. 1.8 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location. 1.9 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7, 8.1, and 10.5. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords aromatics; fluorescent indicator adsorption (FIA); hydrocarbon types; olefins; saturates; ICS Code ICS Number Code 75.080 (Petroleum products in general) DOI: 10.1520/D1319-20A This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|