FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D3426 2012ASTM D3426 - 97(2012)Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials Using Impulse WavesActive Standard ASTM D3426 | Developed by Subcommittee: D09.12 Book of Standards Volume: 10.02 ASTM D3426Significance and Use 5.1 Insulating materials used in high-voltage equipment may be subjected to transient voltage stresses, resulting from such causes as nearby lightning strokes. This is particularly true of apparatus such as transformers and switchgear used in electrical-power transmission and distribution systems. The ability of insulating materials to withstand these transient voltages is important in establishing the reliability of apparatus insulated with these materials. 5.2 Transient voltages caused by lightning may be of either positive or negative polarity. In a symmetrical field between identical electrodes, the polarity has no effect on the breakdown strength. However, with dissimilar electrodes there may be a pronounced polarity effect. It is common practice when using dissimilar electrodes, to make negative that electrode at which the higher gradient will appear. When asymmetrical electrodes are used for testing materials with which the tester has no previous experience or knowledge, it is recommended that he make comparative tests with positive polarity and negative polarity applied to the higher gradient, or smaller electrode, to determine which polarity produces the lower breakdown voltage. 5.3 The standard wave shape is a 1.2 by 50-?s wave, reaching peak voltage in approximately 1.2 ?s and decaying to 50?% of peak voltage in approximately 50 ?s after the beginning of the wave. This wave is intended to simulate a lightning stroke that may strike a system without causing failure on the system. 5.4 For most materials, the impulse dielectric strength will be higher than either its power frequency alternating voltage or its direct voltage dielectric strengths. Because of the short time involved, dielectric heating and other thermal effects are largely eliminated during impulse testing. Thus, the impulse test gives values closer to the intrinsic breakdown strength than do longer time tests. From comparisons of the impulse dielectric strength with the values obtained from longer time tests, inferences may be drawn as to the modes of failures under the various tests for a given material. Appendix X1 of Test Method D149 should be referred to for further information on this subject. 1. Scope 1.1 This test method covers the determination of dielectric strength of solid electrical insulating materials under simulated-lightning impulse conditions. 1.2 Procedures are given for tests using standard 1.2 by 50 ?s full-wave impulses. 1.3 This test method is intended for use in determining the impulse dielectric strength of insulating materials, either using simple electrodes or functional models. It is not intended for use in impulse testing of apparatus. 1.4 This test method is similar to IEC Publication 243-3 . All procedures in this test method are included in IEC 243-3 . Differences between this test method and IEC 243-3 are largely editorial. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in Section 9 .
IEC Standard Pub 243-3 Methods of Test for Electric Strength of Solid Insulating Materials--Part 3: Additional Requirements for Impulse TestsAmerican National Standard C 68.1 Techniques for Dielectric Tests (IEEE Standard No. 4) Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.ASTM Standards D149 Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies D374 Test Methods for Thickness of Solid Electrical Insulation D2413 Practice for Preparation of Insulating Paper and Board Impregnated with a Liquid Dielectric Keywords dielectric breakdown; dielectric breakdown criteria; dielectric breakdown voltage; dielectric strength; full-impulse-voltage wave; impulse dielectric strength; impulse generator; impulse waves; lightning strokes; peak value; simulated-lightning impulse; solid insulating material; virtual front time; virtual origin; virtual peak value; virtual time to half-value ; ICS Code ICS Number Code 29.035.01 (Insulating materials in general) DOI: 10.1520/D3426-97R12 ASTM International is a member of CrossRef. ASTM D3426This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|