FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D4001 2013ASTM D4001-13Historical Standard: Standard Test Method for Determination of Weight-Average Molecular Weight of Polymers By Light ScatteringASTM D4001Scope 1.1 This test method describes the test procedures for determining the weight-average molecular weight Mw of polymers by light scattering. It is applicable to all nonionic homopolymers (linear or branched) that dissolve completely without reaction or degradation to form stable solutions. Copolymers and polyelectrolytes are not within its scope. The procedure also allows the determination of the second virial coefficient, A2, which is a measure of polymer-solvent interactions, and the root-mean-square radius of gyration (s2)1/2, which is a measure of the dimensions of the polymer chain. 1.2 The molecular-weight range for light scattering is, to some extent, determined by the size of the dissolved polymer molecules and the refractive indices of solvent and polymer. A range frequently stated is 10,000 to 10,000,000, is often extended in either direction with suitable systems and by the use of special techniques. 1.2.1 The lower limit to molecular weight results from low levels of excess solution scattering over that of the solvent. The greater the specific refractive increment dn/dc (difference in refractive indices of solution and solvent per unit concentration), the greater the level of solution scattering and the lower the molecular weight that shall be determined with a given precision. 1.2.2 The upper limit to molecular weight results from the angular dependence of the solution scattering, which is determined by the molecular size. For sufficiently large molecules, measurements must be made at small scattering angles, which are ultimately outside the range of the photometer used. 1.3 The values stated in SI units are to be regarded as standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Note 1—There is no known ISO equivalent to this standard.
Keywords light scattering; polymers; weight-average molecular weight ICS Code ICS Number Code 83.080.01 (Plastics in general) DOI: 10.1520/D4001-13 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|