FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D5464 2011ASTM D5464 - 11Standard Test Method for pH Measurement of Water of Low ConductivityActive Standard ASTM D5464 | Developed by Subcommittee: D19.03 Book of Standards Volume: 11.01 ASTM D5464Significance and Use pH measurement of low conductivity water is frequently applied to power plant water and condensed steam samples for corrosion and scale prevention. It is sometimes used in pure water treatment systems between multiple pass membranes to optimize performance. High purity water is highly unbuffered and small amounts of contamination can change the pH significantly. Specifically, high purity water rapidly absorbs CO 2 gas from the atmosphere, which lowers the pH of the sample. The sample container and accompanying pH measurement technique minimize exposure of the high purity water sample to the atmosphere. The high purity water sample may contain volatile trace components that will dissipate from the sample if exposed to the atmosphere. The sample container used in this test method will prevent these losses. High purity water has a significant solution temperature coefficient. For greatest accuracy the sample to be measured should be close to the temperature of the sample stream and appropriate compensation should be applied. When the preferred Test Method D5128 , which requires a real-time, flowing sample, cannot be utilized for practical reasons such as physical plant layout, unacceptable loss of water, location of on-line equipment sample points, or availability of dedicated test equipment, this method offers a viable alternative. The most significant difference between the two test methods is that Test Method D5128 obtains a real-time pH measurement from a flowing sample and this method obtains a time delayed pH measurement from a static grab sample. pH measurements of low conductivity water are always subject to interferences (7.1-7.5) and Test Method D5128 is more effective in eliminating these interferences especially with regard to contamination. This static grab sample method is more prone to contamination and temperature-induced errors because of the time lag between the sampling in the plant and sample pH reading which is taken in the laboratory. 1. Scope 1.1 This test method is applicable to determine the pH of water samples with a conductivity of 2 to 100 ? S/cm over the pH range of 3 to 11. pH measurements of water of low conductivity are problematic. Specifically, this test method avoids contamination of the sample with atmospheric gases and prevents volatile components of the sample from escaping. This test method provides for pH electrodes and apparatus that address additional considerations discussed in Annex A2. This test method also minimizes problems associated with the sample's pH temperature coefficient when the operator uses this test method to calibrate an on-line pH monitor or controller (see Appendix X1). 1.2 This test method covers the measurement of pH in water of low conductivity with a lower limit of 2.0 ? S/cm, utilizing a static grab-sample procedure where it is not practicable to take a real-time flowing sample. Note 1Test Method D5128 for on-line measurement is preferred over this method whenever possible. Test Method D5128 is not subject to the limited conductivity range, temperature interferences, potential KCl contamination, and time limitations found with this method. 1.3 For on-line measurements in water with conductivity of 100 ? S/cm and higher, see Test Method D6569 . 1.4 For laboratory measurements in water with conductivity of 100 ? S/cm and higher, see Test Method D1193 . 1.5 The values stated in SI units are to be regarded as standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards D1129 Terminology Relating to Water D1193 Specification for Reagent Water D1293 Test Methods for pH of Water D2777 Practice for Determination of Precision and Bias of Applicable Test Methods of Committee D19 on Water D4453 Practice for Handling of High Purity Water Samples D5128 Test Method for On-Line pH Measurement of Water of Low Conductivity D6569 Test Method for On-Line Measurement of pH Keywords automatic temperature compensator; controlled leakage rate; flowing liquid junction; high purity water; liquid junction potential; low conductivity water; pH glass electrode; pH temperature coefficient; reference electrode; solution temperature coefficient; Acidity, alkalinity, pH--water; Automatic temperature compensator; Conductance and conductivity (electrical)--water; Controlled leakage rate; Flowing liquid junction; High-purity water; Liquid environments; Low-conductivity water; pH--glass electrode; pH--water; Solution temperature coefficient; Temperature tests--water ; ICS Code ICS Number Code 13.060.50 (Examination of water for chemical substances) DOI: 10.1520/D5464-11 ASTM International is a member of CrossRef. ASTM D5464The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|