FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6091 2014ASTM D6091-07-Reapproved2014Withdrawn Standard: Standard Practice for 99 %/95 % Interlaboratory Detection Estimate (IDE) for Analytical Methods with Negligible Calibration Error (Withdrawn 2023)ASTM D6091Scope 1.1 This practice establishes a standard for computing a 99 %/95 % Interlaboratory Detection Estimate (IDE) and provides guidance concerning the appropriate use and application. The calculations involved in this practice can be performed with DQCALC, Microsoft Excel-based software available from ASTM.2 1.2 The IDE is computed to be the lowest concentration at which there is 90 % confidence that a single measurement from a laboratory selected from the population of qualified laboratories represented in an interlaboratory study will have a true detection probability of at least 95 % and a true nondetection probability of at least 99 % (when measuring a blank sample). 1.3 The fundamental assumption of the collaborative study is that the media tested, the concentrations tested, and the protocol followed in the study provide a representative and fair evaluation of the scope and applicability of the test method as written. When properly applied, the IDE procedure ensures that the 99 %/95 % IDE has the following properties: 1.3.1 Routinely Achievable IDE Value—Most laboratories are able to attain the IDE detection performance in routine analyses, using a standard measurement system, at reasonable cost. This property is needed for a detection limit to be practically feasible. Representative laboratories must be included in the data to calculate the IDE. 1.3.2 Routine Sources of Error Accounted For—The IDE should realistically include sources of bias and variation which are common to the measurement process. These sources include, but are not limited to: intrinsic instrument noise, some typical amount of carryover error, plus differences in laboratories, analysts, sample preparation, and instruments. 1.3.3 Avoidable Sources of Error Excluded—The IDE should realistically exclude avoidable sources of bias and variation, that is, those which can reasonably be avoided in routine field measurements. Avoidable sources would include, but are not limited to: modifications to the sample, measurement procedure, or measurement equipment of the validated method, and gross and easily discernible transcription errors (provided there was a way to detect and either correct or eliminate them). 1.3.4 Low Probability of False Detection—The IDE is a true concentration consistent with a measured concentration threshold (critical measured value) that will provide a high probability, 99 %, of true nondetection (a low probability of false detection, α = 1 %). Thus, when measuring a blank sample, the probability of not detecting the analyte would be 99 %. To be useful, this must be demonstrated for the particular matrix being used, and not just for reagent water. 1.3.5 Low Probability of False Nondetection—The IDE should be a true concentration at which there is a high probability, at least 95 %, of true detection (a low probability of false nondetection, β = 5 %, at the IDE), with a simultaneous low probability of false detection (see 1.3.4). Thus, when measuring a sample at the IDE, the probability of detection would be at least 95 %. To be useful, this must be demonstrated for the particular matrix being used, and not just for reagent water.
Note 1—The referenced probabilities, α and β, are key parameters for risk-based assessment of a detection
limit.
1.4 The IDE applies to measurement methods for which calibration error is minor relative to other sources, such as when the dominant source of variation is one of the following (with comment): 1.4.1 Sample Preparation, and calibration standards do not have to go through sample preparation. 1.4.2 Differences in Analysts, and analysts have little opportunity to affect calibration results (such as with automated calibration). 1.4.3 Differences in Laboratories, for whatever reasons, perhaps difficult to identify and eliminate. 1.4.4 Differences in Instruments (measurement equipment), which could take the form of differences in manufacturer, model, hardware, electronics, sampling rate, chemical processing rate, integration time, software algorithms, internal signal processing and thresholds, effective sample volume, and contamination level. 1.5 Alternative Data Quality Objectives—Other values forα, β, confidence, etc. may be chosen for calculating an IDE; however, this procedure addresses only the 99 %/95 % IDE. Keywords critical limit; detection; detection limit; false detection; false nondetection; false positive; matrix effects; statistical tolerance limit; true detection; true nondetection ICS Code ICS Number Code 17.020 (Metrology and measurement in general) DOI: 10.1520/D6091-07R14 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|