FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D6312 2017ASTM D6312-17Active Standard: Standard Guide for Developing Appropriate Statistical Approaches for Groundwater Detection Monitoring Programs at Waste Disposal FacilitiesASTM D6312Scope 1.1 This guide covers the context of groundwater monitoring at waste disposal facilities. Regulations have required statistical methods as the basis for investigating potential environmental impact due to waste disposal facility operation. Owner/operators must typically perform a statistical analysis on a quarterly or semiannual basis. A statistical test is performed on each of many constituents (for example, 10 to 50 or more) for each of many wells (5 to 100 or more). The result is potentially hundreds, and in some cases, a thousand or more statistical comparisons performed on each monitoring event. Even if the false positive rate for a single test is small (for example, 1 %), the possibility of failing at least one test on any monitoring event is virtually guaranteed. This assumes you have performed the statistics correctly in the first place. 1.2 This guide is intended to assist regulators and industry in developing statistically powerful groundwater monitoring programs for waste disposal facilities. The purpose of this guide is to detect a potential groundwater impact from the facility at the earliest possible time while simultaneously minimizing the probability of falsely concluding that the facility has impacted groundwater when it has not. 1.3 When applied inappropriately, existing regulation and guidance on statistical approaches to groundwater monitoring often suffer from a lack of statistical clarity and often implement methods that will either fail to detect contamination when it is present (a false negative result) or conclude that the facility has impacted groundwater when it has not (a false positive). Historical approaches to this problem have often sacrificed one type of error to maintain control over the other. For example, some regulatory approaches err on the side of conservatism, keeping false negative rates near zero while false positive rates approach 100 %. 1.4 The purpose of this guide is to illustrate a statistical groundwater monitoring strategy that minimizes both false negative and false positive rates without sacrificing one for the other. 1.5 This guide is applicable to statistical aspects of groundwater detection monitoring for hazardous and municipal solid waste disposal facilities. 1.6 It is of critical importance to realize that on the basis of a statistical analysis alone, it can never be concluded that a waste disposal facility has impacted groundwater. A statistically significant exceedance over background levels indicates that the new measurement in a particular monitoring well for a particular constituent is inconsistent with chance expectations based on the available sample of background measurements. 1.7 Similarly, statistical methods can never overcome limitations of a groundwater monitoring network that might arise due to poor site characterization, well installation and location, sampling, or analysis. 1.8 It is noted that when justified, intra-well comparisons are generally preferable to their inter-well counterparts because they completely eliminate the spatial component of variability. Due to the absence of spatial variability, the uncertainty in measured concentrations is decreased, making intra-well comparisons more sensitive to real releases (that is, false negatives) and false positive results due to spatial variability are completely eliminated. 1.9 Finally, it should be noted that the statistical methods described here are not the only valid methods for analysis of groundwater monitoring data. They are, however, currently the most useful from the perspective of balancing site-wide false positive and false negative rates at nominal levels. A more complete review of this topic and the associated literature is presented by Gibbons (1).2 1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.12 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process. Keywords control charts; detection monitoring; groundwater; prediction limits; statistics; waste disposal facilities; ICS Code ICS Number Code 13.030.40 (Installations and equipment for waste disposal and treatment) DOI: 10.1520/D6312-17 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|