ASTM D6700-01
Historical Standard: ASTM D6700-01 Standard Practice for Use of Scrap Tire-Derived Fuel
SUPERSEDED (see Active link, below)
ASTM D6700
1. Scope
1.1 This practice covers and provides guidance for the material recovery of scrap tires for their fuel value. The conversion of a whole scrap tire into a chipped formed for use as a fuel produces a product called tire-derived fuel (TDF). This recovery practice has moved from a pioneering concept in the early 1980s to a proven and continuous use in the United States with industrial and utility applications.
1.2 Combustion units engineered to use solid fuels, such as coal or wood or both, are fairly numerous throughout the U.S. Many of these units are now using TDF even though they were not specifically designed to burn TDF. It is clear that TDF has combustion characteristics similar to other carbon-based solid fuels. Similarities led to pragmatic testing in existing combustion units. Successful testing led to subsequent acceptance of TDF as a supplemental fuel when blended with conventional fuels in existing combustion devices. Changes required to modify appropriate existing combustion units to accommodate TDF range from none to relatively minor. The issues of proper applications and specifications are critical to successful utilization of this alternative energy resource.
1.3 This practice explains TDF's use when blended and combusted under normal operating conditions with originally specified fuels. Whole tire combustion for energy recovery is not discussed herein since whole tire usage does not require tire processing to a defined fuel specification.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
Other Standards
SW-8469056 Ion ChromatographyASTM Standards
D2013 Practice for Preparing Coal Samples for Analysis
D2361 Test Method for Chlorine in Coal
D2795 Test Methods for Analysis of Coal and Coke Ash
D3172 Practice for Proximate Analysis of Coal and Coke
D3173 Test Method for Moisture in the Analysis Sample of Coal and Coke
D3174 Test Method for Ash in the Analysis Sample of Coal and Coke from Coal
D3175 Test Method for Volatile Matter in the Analysis Sample of Coal and Coke
D3176 Practice for Ultimate Analysis of Coal and Coke
D3177 Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke
D3178 Test Methods for Carbon and Hydrogen in the Analysis Sample of Coal and Coke
D3179 Test Methods for Nitrogen in the Analysis Sample of Coal and Coke
D3682 Test Method for Major and Minor Elements in Combustion Residues from Coal Utilization Processes
D4239 Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion
D4326 Test Method for Major and Minor Elements in Coal and Coke Ash By X-Ray Fluorescence
D4749 Test Method for Performing the Sieve Analysis of Coal and Designating Coal Size
D5468 Test Method for Gross Calorific and Ash Value of Waste Materials
D5865 Test Method for Gross Calorific Value of Coal and Coke
E873 Test Method for Bulk Density of Densified Particulate Biomass Fuels
Keywords
ash; Btu content; chip size; combustion; conveying; minus; moisture; passenger tire equivalent (PTE); quality control; sulfur; tire-derived fuel (TDF); wire; zinc;
ICS Code
ICS Number Code 83.160.01 (Tyres in general)
DOI: 10.1520/D6700-01
ASTM International is a member of CrossRef.