Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(599)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(319)
(6732)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D7684-11 Standard Guide for Microscopic Characterization of Particles from In-Service Lubricants
    Edition: 2011
    $103.58
    Unlimited Users per year

Description of ASTM-D7684 2011

ASTM D7684 - 11

Standard Guide for Microscopic Characterization of Particles from In-Service Lubricants

Active Standard ASTM D7684 | Developed by Subcommittee: D02.96.06

Book of Standards Volume: 05.04




ASTM D7684

Significance and Use

The objective of particle examination is to diagnose the operational condition of the machine sampled based on the quantity and type of particles observed in the oil. After break-in, normally running machines exhibit consistent particle concentration and particle types from sample to sample. An increase in particle concentration, accompanied by an increase in size and severity of particle types, is indicative of initiation of a fault. This guide describes commonly found particles in in-service lubricants, but does not address methodology for quantification of particle concentration.

This guide is provided to promote improved and expanded use of particulate debris analysis with in-service lubricant analysis. It helps overcome some perceived complexity and resulting intimidation that effectively limits particulate debris analysis to the hands of a specialized and very limited number of practitioners. Standardized terminology and common reporting formats provide consistent interpretation and general understanding.

Without particulate debris analysis, in-service lubricant analysis results often fall short of concluding likely root cause or potential severity from analytical results because of missing information about the possible identification or extent of damaging mechanisms.

Caution shall be exercised when drawing conclusions from the particles found in a particular sample, especially if the sample being examined is the first from that type of machine. Some machines, during normal operation, generate wear particles that would be considered highly abnormal in other machines. For example, many gear boxes generate severe wear particles throughout their expected service life, whereas just a few severe wear particles from an aircraft gas turbine oil sample may be highly abnormal. Sound diagnostics require that a baseline, or typical wear particle signature, be established for each machine type under surveillance.

1. Scope

1.1 This guide covers the classification and reporting of results from in-service lubricant particulate debris analysis obtained by microscopic inspection of wear and contaminant particles extracted from in-service lubricant and hydraulic oil samples. This guide suggests standardized terminology to promote consistent reporting, provides logical framework to document likely or possible root causes, and supports inference associated machinery health condition or severity based on available debris analysis information.

1.2 This guide shall be used in conjunction with an appropriate wear debris analysis sample preparation and inspection technique including, but not limited to, one of the following:

1.2.1 Ferrography using linear glass slides,

1.2.2 Ferrography using rotary glass slides,

1.2.3 Patch analysis using patch makers (filtration through membrane filters),

1.2.4 Filter debris analysis,

1.2.5 Magnetic plug inspection, or

1.2.6 Other means used to extract and inspect particulate debris from in-service lubricants.

1.3 This standard is not intended to evaluate or characterize the advantage or disadvantage of one or another of these particular particle extraction and inspection methods.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D4130 Test Method for Sulfate Ion in Brackish Water, Seawater, and Brines

D4175 Terminology Relating to Petroleum, Petroleum Products, and Lubricants

D7416 Practice for Analysis of In-Service Lubricants Using a Particular Five-Part (Dielectric Permittivity, Time-Resolved Dielectric Permittivity with Switching Magnetic Fields, Laser Particle Counter, Microscopic Debris Analysis, and Orbital Viscometer) Integra

D7596 Test Method for Automatic Particle Counting and Particle Shape Classification of Oils Using a Direct Imaging Integrated Tester

D7647 Test Method for Automatic Particle Counting of Lubricating and Hydraulic Fluids Using Dilution Techniques to Eliminate the Contribution of Water and Interfering Soft Particles by Light Extinction

D7690 Practice for Microscopic Characterization of Particles from In-Service Lubricants by Analytical Ferrography

G40 Terminology Relating to Wear and Erosion

ISO Standard

ISO11171 Hydraulic fluid power - Calibration of automatic particle counters for liquids

Keywords

analytical ferrography; condition monitoring; contaminant particles; filter patch; in-service lubricants; membrane filtration; particle analysis; wear; wear debris analysis; wear particle analysis; wear particles;


ICS Code

ICS Number Code 75.100 (Lubricants, industrial oils and related products)


DOI: 10.1520/D7684-11

ASTM International is a member of CrossRef.

ASTM D7684

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $5,835.44 Buy
VAR
ASTM
[+] $1,206.99 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X