Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(55)
(234)
(996)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(94991)
(3)
(17)
(1)
(374)
(319)
(6732)
(241)
(16)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D7783-21 Standard Practice for Within-laboratory Quantitation Estimation (WQE) (Redline)
    Edition: 2021
    $113.57
    Unlimited Users per year

Description of ASTM-D7783 2021

ASTM D7783-21

Redline Standard: Standard Practice for Within-laboratory Quantitation Estimation (WQE)




ASTM D7783

Scope

1.1 This practice establishes a uniform standard for computing the within-laboratory quantitation estimate associated with Z % relative standard deviation (referred to herein as WQEZ %), and provides guidance concerning the appropriate use and application.

1.2 WQEZ % is computed to be the lowest concentration for which a single measurement from the laboratory will have an estimated Z % relative standard deviation (Z % RSD, based on within-laboratory standard deviation), where Z is typically an integer multiple of 10, such as 10, 20, or 30. Z can be less than 10 but not more than 30. The WQE10 % is consistent with the quantitation approaches of Currie (1)2 and Oppenheimer, et al. (2).

1.3 The fundamental assumption of the WQE is that the media tested, the concentrations tested, and the protocol followed in developing the study data provide a representative and fair evaluation of the scope and applicability of the test method, as written. Properly applied, the WQE procedure ensures that the WQE value has the following properties:

1.3.1 Routinely Achievable WQE Value—The laboratory should be able to attain the WQE in routine analyses, using the laboratory’s standard measurement system(s), at reasonable cost. This property is needed for a quantitation limit to be feasible in practical situations. Representative data must be used in the calculation of the WQE.

1.3.2 Accounting for Routine Sources of Error—The WQE should realistically include sources of bias and variation that are common to the measurement process and the measured materials. These sources include, but are not limited to intrinsic instrument noise, some typical amount of carryover error, bottling, preservation, sample handling and storage, analysts, sample preparation, instruments, and matrix.

1.3.3 Avoidable Sources of Error Excluded—The WQE should realistically exclude avoidable sources of bias and variation (that is, those sources that can reasonably be avoided in routine sample measurements). Avoidable sources include, but are not limited to, modifications to the sample, modifications to the measurement procedure, modifications to the measurement equipment of the validated method, and gross and easily discernible transcription errors (provided there is a way to detect and either correct or eliminate these errors in routine processing of samples).

1.4 The WQE applies to measurement methods for which instrument calibration error is minor relative to other sources, because this practice does not model or account for instrument calibration error, as is true of most quantitation estimates in general. Therefore, the WQE procedure is appropriate when the dominant source of variation is not instrument calibration, but is perhaps one or more of the following:

1.4.1 Sample Preparation, and especially when calibration standards do not go through sample preparation.

1.4.2 Differences in Analysts, and especially when analysts have little opportunity to affect instrument calibration results (as is the case with automated calibration).

1.4.3 Differences in Instruments (measurement equipment), such as differences in manufacturer, model, hardware, electronics, sampling rate, chemical-processing rate, integration time, software algorithms, internal signal processing and thresholds, effective sample volume, and contamination level.

1.5 Data Quality Objectives—For a given method, one typically would compute the WQE for the lowest RSD for which the data set produces a reliable estimate. Thus, if possible, WQE10 % would be computed. If the data indicated that the method was too noisy, so that WQE10 % could not be computed reliably, one might have to compute instead WQE20 %, or possibly WQE30 %. In any case, a WQE with a higher RSD level (such as WQE50 %) would not be considered, though a WQE with RSD < 10 % (such as WQE5 %) could be acceptable. The appropriate level of  RSD is based on the data quality objective(s) for a particular use or uses. This practice allows for calculation of WQEs with user selected  RSDs less than 30 %.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

critical limits; matrix effects; precision; quantitation; quantitation limits;


ICS Code

ICS Number Code 17.020 (Metrology and measurement in general)


DOI: 10.1520/D7783-21

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,105.23 Buy
VAR
ASTM
[+] $5,933.17 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X