FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D8153 2022ASTM D8153-22Active Standard: Standard Test Method for Determination of Soil Water Contents Using a Dielectric Permittivity ProbeASTM D8153Scope 1.1 This test method describes the procedures for measuring the water mass per unit volume of soil and soil-aggregate by use of an in situ permittivity probe. Measurements are taken at a depth beneath the surface of the soil determined by the design of the probe. 1.1.1 For limitations see Section 6 on Interferences. 1.2 The permittivity probe is inserted into a hole drilled or punched into the soil being measured. As its name indicates, the probe measures the dielectric permittivity of the soil into which it is placed. Two electrodes, connected to an oscillating circuit, are mounted a predetermined distance apart. These electrodes act as the plates of a capacitor, with the soil between the plates forming the capacitor dielectric. 1.2.1 The probe circuit creates an oscillating electric field in the soil. Changes in the dielectric permittivity of the soil are indicated by changes in the circuit’s operating frequency. Since water has a much higher dielectric constant (80) than the surrounding soil (typically around 4), the water content can be related by a mathematical function to the change in dielectric permittivity, and, consequently, the changes in the circuit’s operating frequency. 1.2.2 The construction, deployment, and operating principle of the device described in this test method differ from other methods that measure the dielectric constant, bulk electrical conductivity, complex impedance, or electromagnetic impedance (see Test Methods D6780/D6780M, D7698, and D7830/D7830M) of the soil and relate the results to water mass per unit volume and/or water content. 1.2.3 The water content of the soil measured by the permittivity probe is the volumetric water content, expressed as the ratio of the volume of water to the total volume occupied by the soil. This quantity is often converted, and displayed, by the probe in units of mass of water per volume of soil, or water mass per unit volume. This conversion is performed by multiplying the water content (in volume of water per volume of soil) by the density of water. 1.3 Water content most prevalent in engineering and construction activities is known as the gravimetric water content, ω, and is the ratio of the mass of the water in pore spaces to the total mass of solids, expressed as a percentage. To determine this quantity, the bulk density of the soil under measurement must also be determined. 1.4 Units—The values stated in SI units are to be regarded as the standard. Reporting the test results in units other than SI shall not be regarded as nonconformance with this standard. 1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. 1.5.1 For purposes of comparing, a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits. 1.5.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords dielectric constant; dielectric permittivity; permittivity probe; soil water content; volumetric water content; water mass per unit volume; ICS Code ICS Number Code 13.080.40 (Hydrological properties of soils) DOI: 10.1520/D8153-22 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|