FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D8321 2020ASTM D8321-20Historical Standard: Standard Practice for Development and Validation of Multivariate Analyses for Use in Predicting Properties of Petroleum Products, Liquid Fuels, and Lubricants based on Spectroscopic MeasurementsASTM D8321Scope 1.1 This practice covers a guide for the multivariate calibration of infrared (IR) spectrophotometers and Raman spectrometers used in determining the physical, chemical, and performance properties of petroleum products, liquid fuels including biofuels, and lubricants. This practice is applicable to analyses conducted in the near infrared (NIR) spectral region (roughly 780 nm to 2500 nm) through the mid infrared (MIR) spectral region (roughly 4000 cm-1 to 40  cm-1). For Raman analyses, this practice is generally applied to Stokes shifted bands that occur roughly 400 cm-1 to 4000 cm-1 below the frequency of the excitation. Note 1: While the practice described herein deals specifically with mid-infrared, near-infrared, and Raman analysis, much of the mathematical and procedural detail contained herein is also applicable for multivariate quantitative analysis done using other forms of spectroscopy. The user is cautioned that typical and best practices for multivariate quantitative analysis using other forms of spectroscopy may differ from the practice described herein for mid-infrared, near-infrared, and Raman spectroscopies. 1.2 Procedures for collecting and treating data for developing IR and Raman calibrations are outlined. Definitions, terms, and calibration techniques are described. The calibration establishes a multivariate correlation between the spectral features and the properties to be predicted. This correlation is herein referred to as the multivariate model. Criteria for validating the performance of the multivariate model are described. The properties against which a multivariate model is calibrated and validated are measured by Primary Test Methods (PTMs) and the results of the PTM measurement are herein referred to as Primary Test Method Results (PTMR). The analysis of the spectra using the multivariate model produces a Predicted Primary Test Method Result (PPTMR). 1.3 The implementation of this practice requires that the IR spectrophotometer or Raman spectrometer has been installed in compliance with the manufacturer's specifications. In addition, it assumes that, at the time of calibration, validation, and analysis, the analyzer is operating at the conditions specified by the manufacturer. The practice includes instrument performance tests which define the instrument performance at the time of calibration, and which qualify the instrument by demonstrating comparable performance during validation and analysis. 1.4 This practice covers techniques that are routinely applied for online, at-line, and laboratory quantitative analysis. The practice outlined covers the general cases for liquids and solids that are single phase homogeneous samples when presented to the analyzers. Online application is limited by sample viscosity and the ability to introduce sample to the analyzer. All techniques covered require the use of a computer for data collection and analysis. 1.5 This practice is most typically applied when the spectra and the PTMR against which the analysis is calibrated are measured on the same sample. However, for some applications, spectra may be measured on a basestock and the PTMR may be measured on the same basestock after constant level additivation. 1.5.1 Biofuel applications will typically fall into three categories. 1.5.1.1 The spectra and the PTM both measure the finished biofuel blend. 1.5.1.2 The spectra are measured on a petroleum derived blendstock, and the PTM measures the same blendstock after a constant level additivation with the biocomponent. 1.5.1.3 The spectra and PTM both measured the petroleum derived blendstock, and the PPTMRs from the multivariate model are used as inputs into a second model which predicts the results obtained when the PTM is applied to the analysis of the finished blended product. The practice described herein only applies to the first of these two models. 1.6 This practice includes a checklist in Annex A2 against which multivariate calibrations can be examined to determine if they conform to the requirements defined herein. 1.7 For some multivariate spectroscopic analyses, interferences and matrix effects are sufficiently small that it is possible to calibrate using mixtures that contain substantially fewer chemical components than the samples that will ultimately be analyzed. While these surrogate methods generally make use of the multivariate mathematics described herein, they do not conform to procedures described herein, specifically with respect to the handling of outliers. Surrogate methods may indicate that they make use of the mathematics described herein, but they should not claim to follow the procedures described herein. Test Methods D5845 and D6277 are examples of surrogate methods. 1.8 Disclaimer of Liability as to Patented Inventions—Neither ASTM International nor an ASTM committee shall be responsible for identifying all patents under which a license is required in using this document. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. 1.9 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords multivariate analysis; outlier decision; spectroscopic analysis; spectroscopic process analyzer; ICS Code ICS Number Code 75.080 (Petroleum products in general) DOI: 10.1520/D8321-20 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|