Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E1411-23 Standard Practice for Qualification of Radioscopic Systems
    Edition: 2023
    $94.85
    Unlimited Users per year

Description of ASTM-E1411 2023

ASTM E1411-23

Active Standard: Standard Practice for Qualification of Radioscopic Systems




ASTM E1411

Scope

1.1 This practice covers test and measurement details for measuring the performance of X-ray and gamma ray radioscopic systems. Radioscopy is a radiographic technique that can be used in (1) dynamic mode radioscopy to track motion or optimize radiographic parameters in real-time (25 to 30 frames per second), or both, near real-time (a few frames per second), or high speed (hundreds to thousands of frames per second) or (2) static mode radioscopy where there is no motion of the object during exposure as a filmless recording medium. This practice2 provides application details for radioscopic examination using penetrating radiation using an analog component such as an electro-optic device (for example, X-ray image intensifier (XRII) or analog camera, or both) or a Digital Detector Array (DDA) used in dynamic mode radioscopy. This practice is not to be used for static mode radioscopy using DDAs. If static radioscopy using a DDA (that is, DDA radiography) is being performed, use Practice E2698.

1.1.1 This practice also may be used for Linear Detector Array (LDA) applications where an LDA uses relative perpendicular motion between the detector and component to build an image line by line.

1.1.2 This practice may also be used for “flying spot” applications where a pencil beam of X-rays rasters over an object to build an image point by point.

1.2 Basis of Application: 

1.2.1 The requirements of this practice and Practice E1255 shall be used together. The requirements of Practice E1255 provide the minimum requirements for radioscopic examination of materials. This practice is intended as a means of initially qualifying and re-qualifying a radioscopic system for a specified application by determining its performance when operated in a static or dynamic mode. Re-qualification may require agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization and should be addressed in the purchase order or the contract.

1.2.2 System architecture including the means of radioscopic examination record archiving and the method for making the accept/reject decision are also unique system features and their effect upon system performance must be evaluated.

1.2.3 This qualification procedure is intended to benchmark radioscopic system performance under selected operating conditions to provide a measure of system performance. Qualification shall not restrict operation of the radioscopic system at other radioscopic examination parameter settings, which may provide improved performance on actual examination objects. This practice neither approves nor disapproves the use of the qualified radioscopic system for the specified application. It is intended only as a standardized means of evaluating system performance.

1.3 The general principles, as stated in this practice, apply broadly to transmitted-beam penetrating radiation radioscopy systems. Other radioscopic systems, such as those employing neutrons and Compton back-scattered X-ray imaging techniques, are not covered as they may involve equipment and application details unique to such systems.

1.4 The user of this practice shall note that energies higher than 320 keV may require different methods than those described within this practice.

1.5 This practice requires that a System Qualification Report be issued before using the system for production use.

1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

contrast sensitivity; detector unsharpness; duplex wire gauge; edge sharpening; field of view (FOV); focal detector distance (FDD); focal object distance (FOD); focal spot size; image processor; image quality indicator; imager; image unsharpness; line-pair gauge; magnification; near real-time radioscopy; noise reduction; penetrating radiation; radioscopic; radioscopic examination geometry; raster scan; real-time radioscopy; static mode; step wedge; transmitted beam;


ICS Code

ICS Number Code 19.100 (Non-destructive testing)


DOI: 10.1520/E1411-23

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $923.88 Buy
VAR
ASTM
[+] $4,507.56 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X