FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E1847 2013ASTM E1847 - 96(2013)Standard Practice for Statistical Analysis of Toxicity Tests Conducted Under ASTM GuidelinesActive Standard ASTM E1847 | Developed by Subcommittee: E50.47 Book of Standards Volume: 11.06 ASTM E1847Significance and Use 4.1 The use of statistical analysis will enable the investigator to make better, more informed decisions when using the information derived from the analyses. 4.1.1 The goals when performing statistical analyses, are to summarize, display, quantify, and provide objective measures for assessing the relationships and anomalies in data. Statistical analyses also involve fitting a model to the data and making inferences from the model. The type of data dictates the type of model to be used. Statistical analysis provides the means to test differences between control and treatment groups (one form of hypothesis testing), as well as the means to describe the relationship between the level of treatment and the measured responses (concentration effect curves), or to quantify the degree of uncertainty in the end-point estimates derived from the data. 4.1.2 The goals of this practice are to identify and describe commonly used statistical procedures for toxicity tests. Fig. 1 , Section 6 , following statistical methods (Section 5 ), presents a flow chart and some recommended analysis paths, with references. From this guideline, it is recommended that each investigator develop a statistical analysis protocol specific to his test results. The flow chart, along with the rest of this guideline, may provide both useful direction, and service as a quality assurance tool, to help ensure that important steps in the analysis are not overlooked.
FIG. 1 ?Flow Chart for Practice for Statistical Analysis
FIG. 1 ?Flow Chart for Practice for Statistical Analysis (continued)
FIG. 1 ?Flow Chart for Practice for Statistical Analysis (continued)
FIG. 1 ?Flow Chart for Practice for Statistical Analysis (continued)
1. Scope 1.1 This practice covers guidance for the statistical analysis of laboratory data on the toxicity of chemicals or mixtures of chemicals to aquatic or terrestrial plants and animals. This practice applies only to the analysis of the data, after the test has been completed. All design concerns, such as the statement of the null hypothesis and its alternative, the choice of alpha and beta risks, the identification of experimental units, possible pseudo replication, randomization techniques, and the execution of the test are beyond the scope of this practice. This practice is not a textbook, nor does it replace consultation with a statistician. It assumes that the investigator recognizes the structure of his experimental design, has identified the experimental units that were used, and understands how the test was conducted. Given this information, the proper statistical analyses can be determined for the data. 1.1.1 Recognizing that statistics is a profession in which research continues in order to improve methods for performing the analysis of scientific data, the use of statistical methods other than those described in this practice is acceptable as long as they are properly documented and scientifically defensible. Additional annexes may be developed in the future to reflect comments and needs identified by users, such as more detailed discussion of probit and logistic regression models, or statistical methods for dose response and risk assessment. 1.2 The sections of this guide appear as follows:
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards E178 Practice for Dealing With Outlying Observations E456 Terminology Relating to Quality and Statistics E1241 Guide for Conducting Early Life-Stage Toxicity Tests with Fishes E1325 Terminology Relating to Design of Experiments IEEE/ASTM SI 10 American National Standard for Use of the International System of Units (SI): The Modern Metric System Keywords ANOVA; categorical data analysis; flow chart; means comparisons; plots; probit analysis; regression; reliability analysis; statistical analysis; trend analysis ; ICS Code ICS Number Code 03.120.30 (Application of statistical methods); 07.100.10 (Medical microbiology) DOI: 10.1520/E1847-96R13 ASTM International is a member of CrossRef. ASTM E1847This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|