FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E251 2020ASTM E251-20Historical Standard: Standard Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain GagesASTM E251Scope 1.1 The purpose of these test methods are to provide uniform test methods for the determination of strain gage performance characteristics. Suggested testing equipment designs are included. 1.2 Test Methods E251 describes methods and procedures for determining five strain gage parameters:
1.3 Strain gages are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications. 1.3.1 Strain gage resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are related to a change in the gage resistance from a known reference value. 1.3.2 Gage factor is the transfer function of a strain gage. It relates resistance change in the gage and strain to which it is subjected. Accuracy of strain gage data can be no better than the precision of the gage factor. 1.3.3 Changes in gage factor as temperature varies also affect accuracy although to a much lesser degree since variations are usually small. 1.3.4 Transverse sensitivity is a measure of the strain gage's response to strains perpendicular to its measurement axis. Although transverse sensitivity is usually much less than 10 % of the gage factor, large errors can occur if the value is not known with reasonable precision. 1.3.5 Thermal output is the response of a strain gage to temperature changes. Thermal output is an additive (not multiplicative) error. Therefore, it can often be much larger than the gage output from structural loading. To correct for these effects, thermal output must be determined from gages bonded to specimens of the same material on which the tests are to run, often to the test structure itself. 1.4 Bonded resistance strain gages differ from extensometers in that they measure average unit elongation (ΔL/L) over a nominal gage length rather than total elongation between definite gauge points. Practice E83 is not applicable to these gages. 1.5 These test methods do not apply to transducers, such as load cells and extensometers, that use bonded resistance strain gages as sensing elements. 1.6 Strain gages are part of a complex system that includes structure, adhesive, gage, lead wires, instrumentation, and (often) environmental protection. As a result, many things affect the performance of strain gages, including user technique. A further complication is that strain gages once installed normally cannot be reinstalled in another location. Therefore, gage characteristics can be stated only on a statistical basis. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords ICS Code ICS Number Code 19.060 (Mechanical testing) DOI: 10.1520/E0251-20 The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|