FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E251 2009ASTM E251 - 92(2009)Standard Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain GagesActive Standard ASTM E251 | Developed by Subcommittee: E28.01 Book of Standards Volume: 03.01 ASTM E251Significance and Use Strain gauges are the most widely used devices for the determination of materials, properties and for analyzing stresses in structures. However, performance parameters of strain gauges are affected by both the materials from which they are made and their geometric design. These test methods detail the minimum information that must accompany strain gauges if they are to be used with acceptable accuracy of measurement. Most performance parameters of strain gauges require mechanical testing that is destructive. Since test gauges cannot be used again, it is necessary to treat data statistically and then apply values to the remaining population from the same lot or batch. Failure to acknowledge the resulting uncertainties can have serious repercussions. Resistance measurement is non-destructive and can be made for each gauge. Properly designed and manufactured strain gauges, whose properties have been accurately determined and with appropriate uncertainties applied, represent powerful measurement tools. They can determine small dimensional changes in structures with excellent accuracy, far beyond that of other known devices. It is important to recognize, however, that individual strain gauges cannot be calibrated. If calibration and traceability to a standard are required, strain gauges should not be employed. To be used, strain gauges must be bonded to a structure. Good results depend heavily on the materials used to clean the bonding surface, to bond the gauge, and to provide a protective coating. Skill of the installer is another major factor in success. Finally, instrumentation systems must be carefully designed to assure that they do not unduly degrade the performance of the gauges. In many cases, it is impossible to achieve this goal. If so, allowance must be made when considering accuracy of data. Test conditions can, in some instances, be so severe that error signals from strain gauge systems far exceed those from the structural deformations to be measured. Great care must be exercised in documenting magnitudes of error signals so that realistic values can be placed on associated uncertainties. 1. Scope 1.1 The purpose of this standard is to provide uniform test methods for the determination of strain gauge performance characteristics. Suggested testing equipment designs are included. 1.2 Test Methods E 251 describes methods and procedures for determining five strain gauge parameters:
1.3 Strain gauges are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications. 1.3.1 Strain gauge resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are related to a change in the gauge resistance from a known reference value. 1.3.2 Gauge factor is the transfer function of a strain gauge. It relates resistance change in the gauge and strain to which it is subjected. Accuracy of strain gauge data can be no better than the precision of the gauge factor. 1.3.3 Changes in gauge factor as temperature varies also affect accuracy although to a much lesser degree since variations are usually small. 1.3.4 Transverse sensitivity is a measure of the strain gauge's response to strains perpendicular to its measurement axis. Although transverse sensitivity is usually much less than 10 % of the gauge factor, large errors can occur if the value is not known with reasonable precision. 1.3.5 Thermal output is the response of a strain gauge to temperature changes. Thermal output is an additive (not multiplicative) error. Therefore, it can often be much larger than the gauge output from structural loading. To correct for these effects, thermal output must be determined from gauges bonded to specimens of the same material on which the tests are to run; often to the test structure itself. 1.4 Bonded resistance strain gauges differ from extensometers in that they measure average unit elongation ( ? L/L) over a nominal gauge length rather than total elongation between definite gauge points. Practice E 83 is not applicable to these gauges. 1.5 These test methods do not apply to transducers, such as load cells and extensometers, that use bonded resistance strain gauges as sensing elements. 1.6 Strain gauges are part of a complex system that includes structure, adhesive, gauge, leadwires, instrumentation, and (often) environmental protection. As a result, many things affect the performance of strain gauges, including user technique. A further complication is that strain gauges once installed normally cannot be reinstalled in another location. Therefore, gauge characteristics can be stated only on a statistical basis. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards E83 Practice for Verification and Classification of Extensometer Systems E228 Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer E289 Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry E1237 Guide for Installing Bonded Resistance Strain Gages Keywords Bonded resistance strain gages; Elongation--metallic materials; Gages; Performance--metals/alloys materials/applications; Resistance; Resistance gages; Strain gages; Temperature tests--metals/alloys; Transverse sensitivity ; ICS Code ICS Number Code 19.060 (Mechanical testing) DOI: 10.1520/E0251-92R09 ASTM International is a member of CrossRef. ASTM E251This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|