FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E2647 2013ASTM E2647 - 13Standard Test Method for Quantification of Pseudomonas aeruginosa Biofilm Grown Using Drip Flow Biofilm Reactor with Low Shear and Continuous FlowActive Standard ASTM E2647 | Developed by Subcommittee: E35.15 Book of Standards Volume: 11.05 ASTM E2647Significance and Use 5.1 Vegetative biofilm bacteria are phenotypically different from suspended cells of the same genotype. Biofilm growth reactors are engineered to produce biofilms with specific characteristics. Altering either the engineered system or operating conditions will modify those characteristics. 5.2 The purpose of this test method is to direct a user in how to grow, sample, and analyze a P. aeruginosa biofilm under low fluid shear and close to the air/liquid interface using the DFR. The P. aeruginosa biofilm that grows has a smooth appearance and is loosely attached. Microscopically, the biofilm is sheet-like with few architectural details. This laboratory biofilm could represent those found on produce sprayers, on food processing conveyor belts, on catheters, in lungs with cystic fibrosis, and oral biofilms, for example. The biofilm generated in the DFR is also suitable for efficacy testing. After the 54 h growth phase is complete, the user may add the treatment in?situ or harvest the coupons and treat them individually. Research has shown that P. aeruginosa biofilms grown in the DFR were less tolerant to disinfection than biofilms grown under high shear conditions. 5 1. Scope 1.1 This test method specifies the operational parameters required to grow a repeatable 2 Pseudomonas aeruginosa biofilm close to the air/liquid interface in a reactor with a continuous flow of nutrients under low fluid shear conditions. The resulting biofilm is representative of generalized situations where biofilm exists at the air/liquid interface under low fluid shear rather than representative of one particular environment. 1.2 This test method uses the drip flow reactor. The drip flow reactor (DFR) is a plug flow reactor with laminar flow resulting in low fluid shear. The reactor is versatile and may also be used for growing and/or characterizing biofilms of different species, although this will require changing the operational parameters to optimize the method based upon the growth requirements of the new organism. 1.3 This test method describes how to sample and analyze biofilm for viable cells. Biofilm population density is recorded as log colony forming units per surface area. 1.4 Basic microbiology training is required to perform this test method. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Other Standard Method9050 C.1.a Buffered Dilution Water Preparation Eaton, A. D., Clesceri, L. S., and Greenberg, A. E., Eds., Standard Methods for the Examination of Water and Waste Water, 19th Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, 1995.ASTM Standards D5465 Practice for Determining Microbial Colony Counts from Waters Analyzed by Plating Methods Keywords biofilm; coupons; growth reactor; Pseudomonas aeruginosa ; reactors; sampling; shear; ICS Code ICS Number Code 13.060.30 (Sewage water) DOI: 10.1520/E2647-13 ASTM International is a member of CrossRef. ASTM E2647The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|