FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E2684 2009ASTM E2684 - 09Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat GagesActive Standard ASTM E2684 | Developed by Subcommittee: E21.08 Book of Standards Volume: 15.03 ASTM E2684Significance and Use This test method will provide guidance for the measurement of the net heat flux to or from a surface location. To determine the radiant energy component the emissivity or absorptivity of the gage surface coating is required and should be matched with the surrounding surface. The potential physical and thermal disruptions of the surface due to the presence of the gage should be minimized and characterized. For the case of convection and low source temperature radiation to or from the surface it is important to consider how the presence of the gage alters the surface heat flux. The desired quantity is usually the heat flux at the surface location without the presence of the gage. Temperature limitations are determined by the gage material properties and the method of application to the surface. The range of heat flux that can be measured and the time response are limited by the gage design and construction details. Measurements from 10 W/m 2 to above 100 kW/m 2 are easily obtained with current sensors. Time constants as low as 10 ms are possible, while thicker sensors may have response times greater than 1 s. It is important to choose the sensor style and characteristics to match the range and time response of the required application.
The measured heat flux is based on one-dimensional analysis with a uniform heat flux over the surface of the gage surface. Because of the thermal disruption caused by the placement of the
gage on the surface, this may not be true. Wesley ( 3 ) and Baba et al. ( 4 ) have analyzed the effect of the gage on the thermal field and
heat transfer within the surface substrate and determined that the one-dimensional assumption is valid when:
Measurements of convective heat flux are particularly sensitive to disturbances of the temperature of the surface. Because the heat transfer coefficient is also affected by any non-uniformities of the surface temperature, the effect of a small temperature change with location is further amplified, as explained by Moffat et al. ( 2 ) and Diller ( 5 ). Moreover, the smaller the gage surface area, the larger is the effect on the heat-transfer coefficient of any surface temperature non-uniformity. Therefore, surface temperature disruptions caused by the gage should be kept much smaller than the surface to environment temperature difference causing the heat flux. This necessitates a good thermal path between the gage and the surface onto which it is mounted. Fig. 2 shows a heat-flux gage mounted onto a plate with the surface temperature of the gage of T s and the surface temperature of the surrounding plate of T p . The goal is to keep the gage surface temperature as close as possbible to the plate temperature to minimize the thermal disruption of the gage. This requires the thermal resistance of the gage and adhesive to be minimized along the thermal pathway from T s and T p . Another method to avoid the surface temperature disruption problem is to cover the entire surface with the heat-flux gage material. This effectively ensures that the thermal resistance through the gage is matched with that of the surrounding plate. It is important to have independent measures of the substrate surface temperature and the surface temperature of the gage. The gage surface temperature must be used for defining the value of the heat-transfer coefficient. When the gage material does not cover the entire surface, the temperature measurements are needed to ensure that the gage does indeed provide a small thermal disruption.
The time response of the heat-flux gage can be estimated analytically if the thermal properties of the thermal-resistance layer are well known. The time required for 98 % response to a step
input ( 6 ) based on a one-dimensional analysis is:
5.4.1 Because the response of these sensors is close to an exponential rise, a measure of the time constant ? for the sensor can be obtained by matching the
experimental response to step changes in heat flux with exponential curves.
1. Scope 1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046 . The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface ( 1 ). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical engineering with measurements ranging form 0.01 to 50 kW/m 2 . The gages are usually square or rectangular and vary in size from 1 mm to 10 cm or more on a side. The thicknesses range from 0.05 to 3 mm. 1.3 The values stated in SI units are to be regarded as the standard. The values stated in parentheses are provided for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
ASTM Standards C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus C1041 Practice for In-Situ Measurements of Heat Flux in Industrial Thermal Insulation Using Heat Flux Transducers C1046 Practice for In-Situ Measurement of Heat Flux and Temperature on Building Envelope Components Keywords heat-flux gage; temperature gradient; thermal transport; ICS Code ICS Number Code 17.200.10 (Heat. Calorimetry) DOI: 10.1520/E2684-09 ASTM International is a member of CrossRef. ASTM E2684The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|