Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(621)
(599)
(55)
(234)
(1006)
(696)
(2183)
(117)
(95207)
(63)
(584)
(124)
(33)
(21)
(20)
(96195)
(17)
(1)
(374)
(325)
(7076)
(241)
(21)
(6)
(1667)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E482-22 Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance (Redline)
    Edition: 2022
    $144.00
    Unlimited Users per year

Description of ASTM-E482 2022

ASTM E482-22

Redline Standard: Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance




ASTM E482

Scope

1.1 Need for Neutronics Calculations—An accurate calculation of the neutron fluence and fluence rate at several locations is essential for the analysis of integral dosimetry measurements and for predicting irradiation damage exposure parameter values in the pressure vessel. Exposure parameter values may be obtained directly from calculations or indirectly from calculations that are adjusted with dosimetry measurements; Guide E944 and Practice E853 define appropriate computational procedures.

1.2 Methodology—Neutronics calculations for application to reactor vessel surveillance encompass three essential areas: (1) validation of methods by comparison of calculations with dosimetry measurements in a benchmark experiment, (2) determination of the neutron source distribution in the reactor core, and (3) calculation of neutron fluence rate at the surveillance position and in the pressure vessel.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Keywords

discrete ordinates; dosimetry; exposure parameter; Monte Carlo; neutron fluence; pressure vessel; radiation transport;


ICS Code

ICS Number Code 27.120.20 (Nuclear power plants. Safety)


DOI: 10.1520/E0482-22



X
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100