FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-E840 2013ASTM E840 - 95(2013)Standard Practice for Using Flame Photometric Detectors in Gas ChromatographyActive Standard ASTM E840 | Developed by Subcommittee: E13.19 Book of Standards Volume: 03.06 ASTM E840Abstract This practice is intended as a guide for the use of a flame photometric detector (FPD) as the detection component of a gas chromatographic system. The different principles of flame photometric detectors, and detector construction are presented in details. The detector sensitivity, minimum detectability, dynamic range, power law of sulphur response, linear range-phosphorus mode, unipower response range, noise and drift, and specificity are presented in details. The photomultiplier dark current is the magnitude of the FPD output signal measured with the FPD flame off. Flame background current is the difference in FPD output signal with the flame on and with the flame off in the absence of phosphorus or sulfur compounds in the flame. This abstract is a brief summary of the referenced standard. It is informational only and not an official part of the standard; the full text of the standard itself must be referred to for its use and application. ASTM does not give any warranty express or implied or make any representation that the contents of this abstract are accurate, complete or up to date. 1. Scope 1.1 This practice is intended as a guide for the use of a flame photometric detector (FPD) as the detection component of a gas chromatographic system. 1.2 This practice is directly applicable to an FPD that employs a hydrogen-air flame burner, an optical filter for selective spectral viewing of light emitted by the flame, and a photomultiplier tube for measuring the intensity of light emitted. 1.3 This practice describes the most frequent use of the FPD which is as an element-specific detector for compounds containing sulfur (S) or phosphorus (P) atoms. However, nomenclature described in this practice are also applicable to uses of the FPD other than sulfur or phosphorus specific detection. 1.4 This practice is intended to describe the operation and performance of the FPD itself independently of the chromatographic column. However, the performance of the detector is described in terms which the analyst can use to predict overall system performance when the detector is coupled to the column and other chromatographic system components. 1.5 For general gas chromatographic procedures, Practice E260 should be followed except where specific changes are recommended herein for use of an FPD. 1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific safety information, see Section 4 , Hazards.
ASTM Standards E260 Practice for Packed Column Gas Chromatography E355 Practice for Gas Chromatography Terms and Relationships Keywords flame ionization detector (FID); flame photometric detectors (FPD); gas chromatography (GC); packed columns; supercritical fluid chromatography (SFC); ICS Code ICS Number Code 17.180.30 (Optical measuring instruments); 71.040.50 (Physicochemical methods of analysis) DOI: 10.1520/E0840-95R13 ASTM International is a member of CrossRef. ASTM E840This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|