Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    F2149-16 Standard Test Method for Automated Analyses of Cells—the Electrical Sensing Zone Method of Enumerating and Sizing Single Cell Suspensions
    Edition: 2016
    $76.13
    Unlimited Users per year

Description of ASTM-F2149 2016

ASTM F2149-16

Active Standard: Standard Test Method for Automated Analyses of Cells—the Electrical Sensing Zone Method of Enumerating and Sizing Single Cell Suspensions




ASTM F2149

Scope

1.1 This test method, provided the limitations are understood, covers a procedure for both the enumeration and measurement of size distribution of most all cell types. The instrumentation allows for user-selectable cell size settings and is applicable to a wide range of cell types. The method works best for spherical cells, and may be less accurate if cells are not spherical, such as for discoid cells or budding yeast. The method is appropriate for suspension as well as adherent cell cultures (1).2 Results may be reported as number of cells per milliliter or total number of cells per volume of cell suspension analyzed. Size distribution may be expressed in cell diameter or volume.

1.2 Cells commonly used in tissue-engineered medical products (2) are analyzed routinely. Examples are chondrocytes (3), fibroblasts (4), and keratinocytes (5). Szabo et al. used the method for both pancreatic islet number and volume measurements (6). In addition, instrumentation using the electrical sensing zone technology was used for both count and size distribution analyses of porcine hepatocytes placed into hollow fiber cartridge extracorporeal liver assist systems. In this study (7), and others (6, 8), the automated electrical sensing zone method was validated for precision when compared to the conventional visual cell counting under a microscope using a hemocytometer. Currently, it is not possible to validate cell counting devices for accuracy, since there not a way to produce a reference sample that has a known number of cells. The electrical sensing zone method shall be validated each time it is implemented in a new laboratory, it is used on a new cell type, or the cell counting procedure is modified.

1.3 Electrical sensing zone instrumentation (commonly referred to as a Coulter counter) is manufactured by a variety of companies and is based upon electrical impedance. This test method, for cell counting and sizing, is based on the detection and measurement of changes in electrical resistance produced by a cell, suspended in a conductive liquid, traversing through a small aperture (see Fig. 1(9)). When cells are suspended in a conductive liquid, phosphate-buffered saline for instance, they function as discrete insulators. When the cell suspension is drawn through a small cylindrical aperture, the passage of each cell changes the impedance of the electrical path between two submerged electrodes located on each side of the aperture. An electrical pulse, suitable for both counting and sizing, results from the passage of each cell through the aperture. The path through the aperture, in which the cell is detected, is known as the “electronic sensing zone.” This test method permits the selective counting of cells within narrow size distribution ranges by electronic selection of the generated pulses. While the number of pulses indicates cell count, the amplitude of the electrical pulse produced depends on the cell's volume. The baseline resistance between the electrodes is due to the resistance of the conductive liquid within the boundaries of the aperture. The presence of cells within the “electronic sensing zone” raises the resistance of the conductive pathway that depends on the volume of the cell. Analyses of the behavior of cells within the aperture demonstrates that the height of the pulse produced by the cell is the parameter that most nearly shows proportionality to the cell volume.

1.4 Limitations are discussed as follows:

1.4.1 Coincidence—Occasionally, more than a single cell transverses the aperture simultaneously. Only a single larger pulse, as opposed to two individual pulses, is generated. The result is a lower cell count and higher cell volume measurement. The frequency of coincidence is a statistically predictable function of cell concentration that is corrected by the instrument. This is called coincidence correction (8). This phenomenon may be reduced by using lower cell concentrations.

1.4.2 Viability—Electrical sensing zone cell counting enumerates both viable and nonviable cells and cannot determine percent viable cells. A separate test, such as Trypan blue, is required to determine percent viable cells.

1.4.3 Cell Diameter—This is a function of the size range capability of the aperture size selected. Measurements may be made in the cell diameter range of 0.6 μm to 1200 μm. Setting the counting size range on the instrument can affect the test results, especially if the cell size has a large distribution, and should be carefully controlled to help achieve repeatability.

1.4.4 Size Range of the Aperture—The size range for a single aperture is proportional to its diameter. The response has been found to depend linearly on diameter over a range from 2 % to 80 % of the diameter. However, the aperture tube may become prone to blockage at levels greater than 60 % of diameter. Therefore, the practical operating range of the aperture is considered to be 2 % to 60 % of the diameter.

1.4.5 Humidity—10 % to 85 %.

1.4.6 Temperature—10 °C to 35 °C.

1.4.7 Electrolyte Solution—The diluent for cell suspension shall provide conductivity and have minimal effect on cell size. The electrolyte of choice is commonly phosphate-buffered saline.


Keywords

automated cell counting; electrical sensing zone; size distribution;


ICS Code

ICS Number Code 07.100.01 (Microbiology in general)


DOI: 10.1520/F2149-16

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,007.78 Buy
VAR
ASTM
[+] $971.23 Buy
VAR
ASTM
[+] $1,618.05 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X