FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F2659 2010ASTM F2659 - 10Standard Guide for Preliminary Evaluation of Comparative Moisture Condition of Concrete, Gypsum Cement and Other Floor Slabs and Screeds Using a Non-Destructive Electronic Moisture MeterActive Standard ASTM F2659 | Developed by Subcommittee: F06.40 Book of Standards Volume: 15.04 ASTM F2659Significance and Use Moisture in concrete floor slabs affects the performance of flooring systems such as resilient, wood, and textile floor coverings and coatings. Manufacturers of such systems generally require moisture testing be performed before installation of coverings on floor slabs and screeds. The measurement of sub-surface comparative moisture condition in the upper 1.0 in. (25.4 mm) stratum of a concrete slab with a non-destructive moisture meter is one such method. Excessive moisture in floor slabs after installation can cause floor covering system failures such as delamination, bonding failure, deterioration of finish flooring and coatings, and microbial growth. 1. Scope 1.1 This guide focuses on obtaining the comparative moisture condition within the upper 1.0 in. (25.4 mm) stratum in concrete, gypsum, anhydrite floor slabs and screeds for field tests. Due to the wide variation of material mixtures and additives used in floor slabs and screeds, this methodology may not be appropriate for all applications. See 1.2 through 1.8 and Section 11. Where appropriate or when specified use further testing as outlined in Test Methods F1869 , F2170 or F2420 before installing a resilient floor covering. 1.2 This guide is intended for use to determine if there are moisture-related conditions existing on, or in, the floor slabs that could adversely impact the successful application and performance of resilient flooring products. 1.3 This guide may be used to aid in the diagnosis of failures of installed resilient flooring. 1.4 This guide is intended to be used in conjunction with meter manufacturer s operation instructions and interpretive data where available. 1.5 Where possible, or when results need to be quantified use this standard guide to determine where additional testing such as Test Methods F1869 , F2170 , or F2420 as specified to characterize the floor slab and the test area environment for moisture, humidity and temperature conditions. 1.6 This guide may not be suitable for areas that have surface applied moisture migration systems, curing compounds or coatings that cannot be removed or cleaned off sufficiently to allow the moisture to move upwards through the slab. For a floor slab of 6 in. (150 mm) plus thickness, low porosity slabs, slabs with no vapor retarder installed, and slabs where the above surface environmental conditions can have a greater than normal influence on the moisture reduction gradient of the floor slab or screed, consider Test Method F2170 (below surface in situ rh method) as a more suitable test method under these circumstances. 1.7 This guide is not intended to provide quantitative results as a basis for acceptance of a floor for installation of moisture sensitive flooring finishes systems. Test Methods F1869 , F2170 , or F2420 provide quantitative information for determining if moisture levels are within specific limits. Results from this guide do not provide vital information when evaluating thick slabs, slabs without effective vapor retarders directly under the slab, lightweight aggregate concrete floors, and slabs with curing compound or sealers on the surface. 1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warnings are given in Section 7 .
ASTM Standards D4259 Practice for Abrading Concrete F1869 Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride F2170 Test Method for Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes F2420 Test Method for Determining Relative Humidity on the Surface of Concrete Floor Slabs Using Relative Humidity Probe Measurement and Insulated Hood Keywords anhydrite; comparative moisture content; concrete; dew point; flooring; floor slabs; gypsum; moisture; moisture content; moisture emission; moisture equilibrium; moisture vapor; relative humidity; temperature; Flooring/floor covering systems (concrete); Gypsum cement; Moisture analysis--concrete; Moisture meter; ICS Code ICS Number Code 91.060.30 (Ceilings. Floors. Stairs) DOI: 10.1520/F2659-10 ASTM International is a member of CrossRef. ASTM F2659The following editions for this book are also available...This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|