Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • BSI
    BS EN 60793-1-33:2017 - TC Tracked Changes. Optical fibres - Measurement methods and test procedures - Stress corrosion susceptibility
    Edition: 2020
    $703.81
    / user per year

Description of BS EN 60793-1-33:2017 - TC 2020

IEC 60793-1-33:2017 contains descriptions of the five main test methods for the determination of stress corrosion susceptibility parameters. The object of this document is to establish uniform requirements for the mechanical characteristic of stress corrosion susceptibility for silica-based fibres. Dynamic fatigue and static fatigue tests are used to determine the (dynamic) n d value and (static) n s value of stress corrosion susceptibility parameters. Currently, only the n d-value is assessed against specification. Measured values greater than 18 per this procedure reflect the n d-value of silica, which is approximately 20. Higher values will not translate to demonstrable enhanced fatigue resistance. Silica fibre mechanical tests determine the fracture stress and fatigue properties under conditions that model the practical applications as closely as possible. The following test methods are used for determining stress corrosion susceptibility:
A:?Dynamic n d value by axial tension;
B:?Dynamic n d value by two-point bending;
C:?Static n s value by axial tension;
D:?Static n s value by two-point bending;
E:?Static n s value by uniform bending.
These methods are appropriate for category A1, A2 and A3 multimode, class B single-mode fibres and class C intraconnecting single-mode fibres. These tests provide values of the stress corrosion parameter, n, that can be used for reliability calculations according to IEC TR 62048. Information common to all methods is contained in Clauses 1 to 10, and information pertaining to each individual test method appears in Annexes A, B, C, D, and E. Annexes F and G offer considerations for dynamic and static stress corrosion susceptibility parameter calculations, respectively; Annex H offers considerations on the different stress corrosion susceptibility parameter test methods. This second edition cancels and replaces the first edition published in 2001. It constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: removal of RTM; changes to scope.


About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X