Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(337)
(589)
(54)
(234)
(996)
(657)
(2161)
(117)
(94394)
(54)
(568)
(124)
(33)
(21)
(20)
(94534)
(3)
(17)
(1)
(374)
(315)
(6631)
(241)
(16)
(6)
(1646)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(31)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • BSI
    PD ISO/TR 27921:2020 Carbon dioxide capture, transportation, and geological storage. Cross Cutting Issues. CO2 stream composition
    Edition: 2020
    $526.05
    / user per year

Description of PD ISO/TR 27921:2020 2020

The primary aim of this document is to describe the main compositional characteristics of the CO2 stream downstream of the capture unit, taking into account common purification options. Accordingly, this document will characterize the different types of impurities and present examples of concentrations determined in recent capture pilot projects as well as through literature review. It identifies ranges of concentrations, giving priority to in situ measurements when available.

The second aim of this document is to identify potential impacts of impurities on all components of the CCS chain, from surface installations (including transport) to the storage complex. For example, impurities can have a significant effect on the phase behaviour of CO2 streams in relation to their concentration. Chemical effects also include the corrosion of metals. The composition of the CO2 stream can also influence the injectivity and the storage capacity, due to physical effects (such as density or viscosity changes) and geochemical reactions in the reservoir. In case of a leakage, toxic and ecotoxic effects of impurities contained in the leaking CO2 stream could also impact the environment surrounding the storage complex.

In order to ensure energy efficiency, proper operation of the whole CCS chain and not to affect its surrounding environment, operators usually limit the concentrations of some impurities, which can, in-turn, influence the design of the capture equipment and purification steps. Such limits are case specific and cannot be described in this report; however, some examples of CO2 stream specifications discussed in the literature are presented in Annex A.

The required purity of the CO2 stream delivered from the capture plant will to a large degree depend on the impurity levels that can be accepted and managed by the transport, injection and storage operations. The capture plant operators will therefore most probably need to purify the CO2 stream to comply with the required transport, injection, storage specifications or with legal requirements.

Monitoring of the CO2 stream composition plays an important role in the management of the entire CCS process. Methods of measuring the composition of the CO2 stream and in particular the concentrations of impurities are described and other parameters relevant for monitoring at the various steps of the CCS chain are described.

The interplay between the set CO2 stream specifications and the efficiency of the entire CCS process is also explained. Finally, the mixing of CO2 streams coming from different sources before transport or storage is addressed, and the main benefits, risks and operational constraints are presented.



About BSI

BSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses.

X