Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(621)
(599)
(55)
(234)
(1006)
(696)
(2183)
(117)
(95207)
(63)
(584)
(124)
(33)
(21)
(20)
(96195)
(17)
(1)
(374)
(325)
(7076)
(241)
(21)
(6)
(1667)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • IEEE
    IEEE Approved Draft Guide for Framework for Trustworthy Federated Machine Learning
    Edition: 2024
    $240.00
    Unlimited Users - 1 Loc per year

Description of P3187 2024

New IEEE Standard - Active - Draft. The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.

X
01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100