Already a subscriber? ![](/assets/images/login.png)
![](/assets/images/x.png)
MADCAD.com Free Trial
Sign up for a 3 day free trial to explore the MADCAD.com interface, PLUS access the
2009 International Building Code to see how it all works.
If you like to setup a quick demo, let us know at support@madcad.com
or +1 800.798.9296 and we will be happy to schedule a webinar for you.
Security check![](/assets/images/x.png)
Please login to your personal account to use this feature.
Please login to your authorized staff account to use this feature.
Are you sure you want to empty the cart?
![](/assets/images/159.gif)
IEEE Recommended Practice for Local and Metropolitan Area Networks--Part 19: Coexistence Methods for IEEE 802.11 and IEEE 802.15.4 Based Systems Operating in the Sub-1 GHz Frequency Bands, 2021
- IEEE Std 802.19.3-2021 Front Cover
- Title page
- Important Notices and Disclaimers Concerning IEEE Standards Documents
- Participants
- Introduction
- Contents
- 1. Overview [Go to Page]
- 1.1 Scope
- 1.2 Word usage
- 2. Normative references
- 3. Definitions, acronyms, and abbreviations [Go to Page]
- 3.1 Definitions
- 3.2 Acronyms and abbreviations
- 4. Overview of the sub1 GHz frequency band systems [Go to Page]
- 4.1 Introduction
- 4.2 IEEE Std 802.11ah
- 4.3 IEEE Std 802.15.4g
- 4.4 IEEE Std 802.15.4w
- 4.5 LoRa
- 4.6 Sigfox
- 4.7 ETSI TS 103 357 [Go to Page]
- 4.7.1 Lfour family
- 4.7.2 Telegram splitting ultra narrow band (TS-UNB) family
- 4.7.3 Dynamic Downlink Ultra Narrow Band (DD-UNB) family
- 4.8 Summary
- 5. Use cases of the sub1 GHz frequency band systems [Go to Page]
- 5.1 Introduction
- 5.2 IEEE Std 802.11ah use cases
- 5.3 IEEE Std 802.15.4g use cases
- 5.4 LoRa use cases
- 5.5 Sigfox use cases
- 5.6 IEEE Std 802.15.4w use cases
- 6. Sub-1 GHz frequency band spectrum allocation [Go to Page]
- 6.1 Introduction
- 6.2 United States
- 6.3 Japan
- 6.4 Europe
- 7. Coexistence mechanisms and issues of the sub1 GHz frequency band systems [Go to Page]
- 7.1 Introduction
- 7.2 IEEE Std 802.11ah coexistence mechanisms
- 7.3 IEEE Std 802.15.4g coexistence mechanisms
- 7.4 IEEE Std 802.15.4w coexistence mechanisms
- 7.5 LoRa coexistence mechanisms
- 7.6 Sigfox coexistence mechanisms
- 7.7 Noise and interference measurement in sub1 GHz bands [Go to Page]
- 7.7.1 Introduction
- 7.7.2 920 MHz band measurements in Japan
- 7.7.3 868 MHz band measurement in Europe
- 7.8 Coexistence performance of IEEE Std 802.11ah and IEEE Std 802.15.4g [Go to Page]
- 7.8.1 Data packet delivery rate
- 7.8.2 Data packet latency
- 7.8.3 IEEE Std 802.11ah and IEEE Std 802.15.4g coexistence issues to be addressed
- 7.9 Coexistence performance of IEEE Std 802.11ah and IEEE Std 802.15.4w
- 7.10 Cause of coexistence issue between IEEE Std 802.11ah and IEEE Std 802.15.4g
- 7.11 IEEE Std 802.11ah and IEEE Std 802.15.4g coexistence performance improvement
- 8. IEEE Std 802.11ah and IEEE Std 802.15.4g coexistence model [Go to Page]
- 8.1 Introduction
- 8.2 Coexistence operation [Go to Page]
- 8.2.1 Centralized coexistence
- 8.2.2 Cooperated (or collaborated) coexistence
- 8.2.3 Distributed network level coexistence
- 8.2.4 Distributed device level coexistence
- 8.3 Coexistence model [Go to Page]
- 8.3.1 Coexistence model based on network coordination
- 8.3.2 Coexistence model based on scope of coexistence operation
- 9. IEEE Std 802.11ah and IEEE Std 802.15.4g coexistence methods and recommendations [Go to Page]
- 9.1 Introduction
- 9.2 Coordinated coexistence methods and recommendations [Go to Page]
- 9.2.1 Introduction
- 9.2.2 Centralized coexistence methods [Go to Page]
- 9.2.2.1 Introduction
- 9.2.2.2 Centralized channel switching
- 9.2.2.3 Centralized IEEE 802.11ah RAW and IEEE 802.15.4g superframe construction
- 9.2.2.4 Centralized IEEE 802.11ah beamforming
- 9.2.2.5 Centralized transmission power setting
- 9.2.3 Cooperated/collaborated coexistence methods [Go to Page]
- 9.2.3.1 Introduction
- 9.2.3.2 Cooperated channel switching
- 9.2.3.3 Cooperated RAW
- 9.2.3.4 Cooperated IEEE 802.11ah beamforming
- 9.2.3.5 Cooperated transmission power setting
- 9.2.4 Recommendations for centralized and cooperated/collaborated coexistence
- 9.3 Distributed coexistence methods and recommendations [Go to Page]
- 9.3.1 Introduction
- 9.3.2 Distributed channel switching
- 9.3.3 Distributed ED threshold setting
- 9.3.4 Distributed transmission power setting
- 9.3.5 Distributed beamforming
- 9.3.6 Distributed transmission time delay
- 9.3.7 α–Fairness based ED-CCA
- 9.3.8 Q-Learning based CSMA/CA
- 9.3.9 Prediction-based transmission time delay
- 9.3.10 Hybrid CSMA/CA
- 9.3.11 Recommendations for distributed coexistence
- 9.4 Frequency hopping and recommendation [Go to Page]
- 9.4.1 Overview
- 9.4.2 Control methods
- 9.4.3 Hopping sequence selection
- 9.4.4 Hopping sequence adaptation
- 9.4.5 Channel access
- 9.4.6 Recommendation for frequency hopping
- 9.5 Network offered load and duty cycle recommendation
- 9.6 Network size recommendation
- 9.7 Frame size recommendation [Go to Page]
- 9.7.1 Introduction
- 9.7.2 Small network size, high IEEE 802.11ah offered load, and low IEEE 802.15.4g offered load [Go to Page]
- 9.7.2.1 IEEE 802.11ah frame size impact
- 9.7.2.2 IEEE 802.15.4g frame size impact
- 9.7.3 Small network size, low IEEE 802.11ah offered load, and high IEEE 802.15.4g offered load [Go to Page]
- 9.7.3.1 IEEE 802.11ah frame size impact
- 9.7.3.2 IEEE 802.15.4g frame size impact
- 9.7.4 Large network size, high IEEE 802.11ah offered load, and low IEEE 802.15.4g offered load [Go to Page]
- 9.7.4.1 IEEE 802.11ah frame size impact
- 9.7.4.2 IEEE 802.15.4g frame size impact
- 9.7.5 Large network size, low IEEE 802.11ah offered load, and high IEEE 802.15.4g offered load [Go to Page]
- 9.7.5.1 IEEE 802.11ah frame size impact
- 9.7.5.2 IEEE 802.15.4g frame size impact
- 9.7.6 Summary of frame size recommendations
- 9.8 Backoff parameter recommendation [Go to Page]
- 9.8.1 Introduction
- 9.8.2 Small network size, high IEEE 802.11ah offered load, and low IEEE 802.15.4g offered load [Go to Page]
- 9.8.2.1 IEEE 802.11ah backoff contention window size impact
- 9.8.2.2 IEEE 802.15.4g backoff parameter impact
- 9.8.3 Small network size, low IEEE 802.11ah offered load, and high IEEE 802.15.4g offered load [Go to Page]
- 9.8.3.1 IEEE 802.11ah backoff contention window size impact
- 9.8.3.2 IEEE 802.15.4g backoff parameter impact
- 9.8.4 Large network size, high IEEE 802.11ah offered load, and low IEEE 802.15.4g offered load [Go to Page]
- 9.8.4.1 IEEE 802.11ah backoff contention window size impact
- 9.8.4.2 IEEE 802.15.4g backoff parameter impact
- 9.8.5 Large network size, low IEEE 802.11ah offered load, and high IEEE 802.15.4g offered load [Go to Page]
- 9.8.5.1 IEEE 802.11ah backoff contention window size impact
- 9.8.5.2 IEEE 802.15.4g backoff parameter impact
- 9.8.6 Summary of backoff parameter recommendations
- 9.9 PHY parameter recommendation
- 9.10 Application-based recommendation
- 9.11 Coexistence method selection recommendation
- Annex A (informative) Coexistence fairness assessment
- Annex B (informative) Bibliograpy
- Back Cover [Go to Page]