Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Search book title
Filters:
FORMAT
BOOKS
PACKAGES
EDITION
to
PUBLISHER
(1)
(338)
(589)
(599)
(55)
(234)
(1006)
(690)
(2161)
(117)
(94958)
(58)
(575)
(124)
(33)
(21)
(20)
(95391)
(3)
(17)
(1)
(374)
(319)
(6938)
(241)
(21)
(6)
(1667)
(17)
(19)
(28)
(4)
 
(6)
(7)
(115)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(25)
(27)
(27)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    D7444-11 Standard Practice for Heat and Humidity Aging of Oxidatively Degradable Plastics
    Edition: 2011
    $103.58
    Unlimited Users per year

Description of ASTM-D7444 2011

ASTM D7444 - 11

Standard Practice for Heat and Humidity Aging of Oxidatively Degradable Plastics

Active Standard ASTM D7444 | Developed by Subcommittee: D20.96

Book of Standards Volume: 08.03




ASTM D7444

Significance and Use

Since the correlation between the conditions specified in this practice and actual disposal environments (for example, composting, soil or landfill) has not been determined or established, the test results are to be used only for comparative and ranking purposes in the laboratory. No extrapolation to real world disposal expectations or predictions are to be made from results obtained by this procedure. Real world evaluations and correlations are needed for such claims.

Degradable plastics exposed to heat and humidity are subject to many types of physical and chemical changes. The severity of the exposures in both time, temperature and humidity level, determines the extent and type of change that occurs. For example, short exposure times at elevated temperatures generally serve to shorten the induction period of oxidatively degradable plastics during which the depletion of antioxidants and stabilizers occurs. Physical properties, such as tensile and impact strength and elongation and modulus, sometimes change during this induction period; however, these changes are generally not due to molecular-weight degradation, but are merely a temperature-dependent response, such as increased crystallinity or loss of volatile material, or both. The effects of humidity are less well understood and are more difficult to predict and depend on the degradable plastics characteristics such as hydrophilicity, polarity and composition.

Generally, short exposures at elevated temperatures drive out volatiles such as moisture, solvents, or plasticizers; relieve molding stresses; advance the cure of thermosets; increase crystallinity; and cause some change in color of the plastic or coloring agent, or both. Normally, additional shrinkage is expected with a loss of volatiles or advance in polymerization.

Some plastic materials such as PVC become brittle due to loss of plasticizers or to molecular breakdown of the polymer. Polypropylene and its copolymers tend to become very brittle as molecular degradation occurs, whereas polyethylene tends to become soft and weak before it embrittles with resultant loss in tensile strength and elongation.

Embrittlement of a material is not necessarily commensurate with a decrease in molecular weight. Test Method is used to characterize any molecular-weight changes that are suspected to have occurred during thermal exposure.

The degree of change observed will depend on the property measured. Different properties do not change at the same rate. In most cases, ultimate properties, such as break strength or break elongation, are more sensitive to degradation than bulk properties such as modulus.

Effects of exposure can be quite variable, especially when samples are exposed for long intervals of time. Factors that affect the reproducibility of data are the degree of temperature control of the enclosure, humidity level of the oven, air velocity over the specimen, and exposure period which are evaluated by this practice. Errors in exposure are cumulative with time; for example certain materials have the potential to be degraded due to the influence of humidity rather than oxidation in long-term tests and thus give misleading results. Materials susceptible to hydrolysis (that is, hydrolytically degradable plastics) undergo degradation when subjected to long-term thermal tests due to the presence of moisture rather than oxidation.

Do not infer that comparative material ranking is undesirable or unworkable. On the contrary, this practice is designed to provide information that can be used for such comparative purposes after appropriate physical property tests are performed following exposure. However, since it does not account for the influence of stress or environment that is involved in most real life applications, the information obtained from this practice must be used cautiously by the designer, who must inevitably make material choices using additional information, such as moisture, soil-type and composition, and mechanical-action effects that are consistent with the requirements of the particular application.

It is possible for many temperature indices to exist, in fact, one for each failure criterion (time to reach failure is dependent on the exposure temperature and humidity). Therefore, for any application of the temperature index to be valid, the thermal-aging program must duplicate the intended exposure conditions of the end product. If the plastic material is exposed in the end use in a manner not evaluated in the aging program, the temperature index thus derived is not applicable to the use of the plastic material.

In some situations, a material can be exposed to one temperature and humidity, for a particular period of time, followed by exposure to another temperature at the same humidity, for a particular period of time. This practice can be used for such applications. The heat-aging curve of the first temperature and humidity is derived, followed by derivation of the heat-aging curve for the second temperature at the same humidity, after exposure of samples to the first temperature and humidity.

There can be very large errors when Arrhenius plots or equations based on data from experiments at a series of temperatures and humidity are used to estimate time to produce a defined property change at some lower temperature. This estimate of time to produce the property change or failure must always be accompanied by a 95 % confidence interval for the range of times possible based on the calculation or estimate.

1. Scope

1.1 This practice indicates how to test the oxidative degradation characteristics of plastics that degrade in the environment under atmospheric pressure and thermal and humidity simulations, only, in the absence of any selected disposal environment such as soil, landfill, or compost. This practice does not by any extension or extrapolation of data or results generated indicate that such plastics are suitable for or will degrade on disposal in these said environments. It is particularly noted that in real world environments such as soil, compost and landfill oxidations, if they occur, will predominantly be under conditions where other interfering ingredients are present and, in the case of landfill, at sub-atmospheric oxygen concentrations. This practice, therefore, can only result in a relative ordering of the potential for oxidation of plastic materials under the conditions tested, which are not always reflective of their behavior in a particular real world disposal systems. Prediction of the oxidation of a plastic under real world disposal conditions is an essential further testing in appropriate methodologies, such as Test Method D5338 for composting. No claims can be made for real world behavior based on this practice.

1.2 This practice is only intended to define the exposure conditions of plastics at various temperatures in air at atmospheric pressure under controlled humidity levels for extended periods of time. The humidity levels and temperature ranges are selected to be within the variable recorded seasonal ranges (upper and lower levels) generally observed in disposal sites where such plastics are discarded. For example: soil (15 to 40 percent moisture); landfill (35 to 60 percent moisture), and compost (45 to 70 percent moisture). It is optional to expose the plastic at zero humidity, if comparison with specified humidity ranges is of interest. Only the procedures for heat and humidity exposures are specified, not the test method or specimen, necessary for the evaluation of the heat and humidity exposure effects. The effect of heat and humidity on any particular property is determined by selection of the appropriate test method and specimen; however, it is recommended that Practice D3826 be used to determine the embrittlement endpoint, which is defined as that point in the history of a material when 75 % of the specimens tested have a tensile elongation at break of 5 % or less at an initial strain rate of 0.1 mm/mm min.

1.3 This practice is used to compare the effects of heat and humidity at any selected temperature, such as those found in the mentioned disposal environments, on the degradation of a particular plastic by selection of an appropriate test method and specimen.

1.4 This practice is to be used in order to apply selected exposure conditions when comparing the thermal-aging characteristics at controlled humidity levels of plastic materials as measured by the change in some property of interest (that is, embrittlement by means of loss of elongation, molecular weight, disintegration, etc.). It is very similar to Practice D3045 but is intended for use in evaluating plastics designed to be oxidized easily after use. The exposure times used for this practice will be significantly shorter than those used for Practice D3045

1.5 The type of oven used can affect the results obtained from this practice. The user can use one of two methods for oven exposure. Do not mix the results based on one method with those based on the other one.

1.6 Procedure A: Gravity-Convection Oven Recommended for film specimens having a nominal thickness not greater than 0.25 mm (0.010 in.).

1.7 Procedure B: Forced-Ventilation Oven Recommended for specimens having a nominal thickness greater than 0.25 mm (0.010 in.).

1.8 This practice recommends procedures for comparing the thermal and humidity aging characteristics of materials at a single temperature under dry or selected humidity conditions. Recommended procedures for determining the thermal aging characteristics of a material at a series of temperatures and humidity conditions for the purpose of estimating time to a defined property change at some lower temperature are also described. This practice does not predict thermal aging characteristics where interactions between stress, environment, temperature, and time control failure.

1.9 The values stated in SI units are to be regarded as the standard.

1.10 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

Note 1There is no known ISO equivalent to this standard.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

D618 Practice for Conditioning Plastics for Testing

D883 Terminology Relating to Plastics

D1870 Practice for Elevated Temperature Aging Using a Tubular Oven

D2436 Specification for Forced-Convection Laboratory Ovens for Electrical Insulation

D3045 Practice for Heat Aging of Plastics Without Load

D3593 Test Method for Molecular Weight Averages/ Distribution of Certain Polymers by Liquid Size-Exclusion Chromatography (Gel Permeation Chromatography GPC) Using Universal Calibration

D3826 Practice for Determining Degradation End Point in Degradable Polyethylene and Polypropylene Using a Tensile Test

D5032 Practice for Maintaining Constant Relative Humidity by Means of Aqueous Glycerin Solutions

D5338 Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures

D5510 Practice for Heat Aging of Oxidatively Degradable Plastics

D6954 Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation

E104 Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions

E145 Specification for Gravity-Convection and Forced-Ventilation Ovens


Keywords

age; degradable; embrittlement; humidity; oven; oxidation; property change;


ICS Code

ICS Number Code 83.080.01 (Plastics in general)


DOI: 10.1520/D7444-11

ASTM International is a member of CrossRef.

ASTM D7444

The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $1,278.52 Buy
VAR
ASTM
[+] $3,362.03 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

X