FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F1192 2024ASTM F1192-24Redline Standard: Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor DevicesASTM F1192Scope 1.1 This guide defines the requirements and procedures for testing integrated circuits and other devices for the effects of single event phenomena (SEP) induced by irradiation with heavy ions having an atomic number Z ≥ 2. This description specifically excludes the effects of neutrons, protons, and other lighter particles that may induce SEP via different mechanisms, for example, ionization or displacement damage. SEP includes any manifestation of upset induced by a single ion strike, including soft errors (one or more simultaneous reversible bit flips), hard errors (irreversible bit flips), latchup (persistent high conducting state), transients induced in combinatorial devices which may introduce a soft error in nearby circuits, power field effect transistor (FET) burn-out, and gate rupture. This test may be considered to be destructive because it often involves the removal of device lids prior to irradiation. Bit flips are usually associated with digital devices and latchup is usually confined to bulk complementary metal oxide semiconductor (CMOS) devices, but heavy ion induced SEP is also observed in combinatorial logic programmable read-only memory (PROMs), and certain linear devices that may respond to a heavy ion induced charge transient. Power transistors may be tested by the procedure called out in Method 1080 of MIL STD 750. 1.2 The procedures described here can be used to simulate and predict SEP arising from the natural space environment, including galactic cosmic rays, planetary trapped ions, coronal mass ejections (CMEs), and solar flares. The techniques do not, however, simulate heavy ion beam nuclear interaction effects. The end product of the test is a plot of the SEP cross section (the number of upsets/events per unit fluence) as a function of ion LET (linear energy transfer or ionization deposited along the ion's path through the semiconductor). This data can be combined with an expected system's heavy ion environment to estimate a system upset rate during operation. 1.3 Although protons can cause SEP, they are not included in this guide. A separate guide addressing proton induced SEP is being considered. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. Keywords SEB; SEE; SEFI; SEGR; SEL; SEP; SEP cross section; SEU; single event; single event effect; single event phenomena; single event upset; space environment; ICS Code ICS Number Code 31.080.01 (Semi-conductor devices in general) DOI: 10.1520/F1192-24 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|