FORMAT
BOOKS
PACKAGES
EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F1392 2002ASTM F1392-02Withdrawn Standard: Standard Test Method for Determining Net Carrier Density Profiles in Silicon Wafers by Capacitance-Voltage Measurements With a Mercury Probe (Withdrawn 2003)ASTM F1392Scope This standard was transferred to SEMI (www.semi.org) May 2003 1.1 This test method covers the measurement of net carrier density and net carrier density profiles in epitaxial and polished bulk silicon wafers in the range from about 4 x 10 13 to about 8 x 1016 carriers/cm 3 (resistivity range from about 0.1 to about 100 Ω·cm in n-type wafers and from about 0.24 to about 330 Ω·cm in p-type wafers). 1.2 This test method requires the formation of a Schottky barrier diode with a mercury probe contact to an epitaxial or polished wafer surface. Chemical treatment of the silicon surface may be required to produce a reliable Schottky barrier diode (1). The surface treatment chemistries are different for n- and p-type wafers. This test method is sometimes considered destructive due to the possibility of contamination from the Schottky contact formed on the wafer surface; however, repetitive measurements may be made on the same test specimen. 1.3 This test method may be applied to epitaxial layers on the same or opposite conductivity type substrate. This test method includes descriptions of fixtures for measuring substrates with or without an insulating backseal layer. 1.4 The depth of the region that can be profiled depends on the doping level in the test specimen. Based on data reported by Severin (1) and Grove (2), Fig. 1 shows the relationships between depletion depth, dopant density, and applied voltage together with the breakdown voltage of a mercury silicon contact. The test specimen can be profiled from approximately the depletion depth corresponding to an applied voltage of 1 V to the depletion depth corresponding to the maximum applied voltage (200 V or about 80 % of the breakdown voltage, whichever is lower). To be measured by this test method, a layer must be thicker than the depletion depth corresponding to an applied voltage of 2 V. 1.5 This test method is intended for rapid carrier density determination when extended sample preparation time or high temperature processing of the wafer is not practical. 1.6 This test method provides for determining the effective area of the mercury probe contact using polished bulk reference wafers that have been measured for resistivity at 23°C in accordance with Test Method F 84 (Note 1). This test method also includes procedures for calibration of the apparatus for measuring both capacitance and voltage. Note 1—An alternative method of determining the effective area of the mercury probe contact that involves the use of reference wafers whose net carrier density has been measured using fabricated mesa or planar p-n junction diodes or evaporated Schottky diodes is not included in this test method but may be used if agreed upon by the parties to the test. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 7.1, (7.2, 7.10.3 (Note 6) 8.2, 11.5.1, 11.6.3, and 11.6.5. Keywords capacitance-voltage method; carrier density; carrier density profile; depth profile; epitaxial wafers; mercury probe; net carrier density; polished wafers; profiles; resistivity; silicon; single crystal silicon ICS Code ICS Number Code 29.045 (Semiconducting materials) DOI: 10.1520/F1392-02 The following editions for this book are also available...
This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|